Where do atoms come from? A physicist explains.
When you buy through links on our articles, Future and its syndication partners may earn a commission.
Curious Kids is a series for children of all ages. If you have a question you'd like an expert to answer, send it to CuriousKidsUS@theconversation.com.
How do atoms form? —Joshua, age 7, Shoreview, Minnesota
Richard Feynman, a famous theoretical physicist who won the Nobel Prize, said that if he could pass on only one piece of scientific information to future generations, it would be that all things are made of atoms.
Understanding how atoms form is a fundamental and important question, since they make up everything with mass.
The question of where atoms comes from requires a lot of physics to be answered completely — and even then, physicists only have good guesses to explain how some atoms are formed.
An atom consists of a heavy center, called the nucleus, made of particles called protons and neutrons. An atom has lighter particles called electrons that you can think of as orbiting around the nucleus.
The electrons each carry one unit of negative charge, the protons each carry one unit of positive charge, and the neutrons have no charge. An atom has the same number of protons as electrons, so it is neutral − it has no overall charge.
Now, most of the atoms in the universe are the two simplest kinds: hydrogen, which has one proton, zero neutrons and one electron; and helium, which has two protons, two neutrons and two electrons. Of course, on Earth there are lots of atoms besides these that are just as common, such as carbon and oxygen, but I'll talk about those soon.
An element is what scientists call a group of atoms that are all the same, because they all have the same number of protons.
Most of the universe's hydrogen and helium atoms formed around 400,000 years after the Big Bang, which is the name for when scientists think the universe began, about 14 billion years ago.
Why did they form at that time? Astronomers know from observing distant exploding stars that the size of the universe has been getting bigger since the Big Bang. When the hydrogen and helium atoms first formed, the universe was about 1,000 times smaller than it is now.
And based on their understanding of physics, scientists believe that the universe was much hotter when it was smaller.
Before this time, the electrons had too much energy to settle into orbits around the hydrogen and helium nuclei. So, the hydrogen and helium atoms could form only once the universe cooled down to something like 5,000 degrees Fahrenheit (2,760 degrees Celsius). For historical reasons, this process is misleadingly called recombination − combination would be more descriptive.
The helium and deuterium — a heavier form of hydrogen — nuclei formed even earlier, just a few minutes after the Big Bang, when the temperature was above 1 billion F (556 million C). Protons and neutrons can collide and form nuclei like these only at very high temperatures.
Scientists believe that almost all the ordinary matter in the universe is made of about 90% hydrogen atoms and 8% helium atoms.
So, the hydrogen and helium atoms formed during recombination, when the cooler temperature allowed electrons to fall into orbits. But you, I and almost everything on Earth is made of many more massive atoms than just hydrogen and helium. How were these atoms made?
The surprising answer is that more massive atoms are made in stars. To make atoms with several protons and neutrons stuck together in the nucleus requires the type of high-energy collisions that occur in very hot places. The energy needed to form a heavier nucleus needs to be large enough to overcome the repulsive electric force that positive charges, like two protons, feel with each other.
Protons and neutrons also have another property — kind of like a different type of charge — that is strong enough to bind them together once they are able to get very close together. This property is called the strong force, and the process that sticks these particles together is called fusion.
Scientists believe that most of the elements from carbon up to iron are fused in stars heavier than our Sun, where the temperature can exceed 1 billion F (556 million C) — the same temperature that the universe was when it was just a few minutes old.
But even in hot stars, elements heavier than iron and nickel won't form. These require extra energy, because the heavier elements can more easily break into pieces.
In a dramatic event called a supernova, the inner core of a heavy star suddenly collapses after it runs out of fuel to burn. During the powerful explosion this collapse triggers, elements that are heavier than iron can form and get ejected out into the universe.
Astronomers are still figuring out the details of other fantastic stellar events that form larger atoms. For example, colliding neutron stars can release enormous amounts of energy — and elements such as gold — on their way to forming black holes.
Understanding how atoms are made just requires learning a little general relativity, plus some nuclear, particle and atomic physics. But to complicate matters, there is other stuff in the universe that doesn't appear to be made from normal atoms at all, called dark matter. Scientists are investigating what dark matter is and how it might form.
This edited article is republished from The Conversation under a Creative Commons license. Read the original article.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


The Hill
10 hours ago
- The Hill
Heat dome passes, but climate-fueled waves aren't going anywhere
Climate change is making heat waves like the one that lingered over much of the U.S. this week more frequent and intense. The Eastern U.S. sweltered under a heat dome in recent days, with some cities surpassing 100 degrees Fahrenheit. Roads in Delaware, Wisconsin and Missouri buckled, while a Virginia bridge malfunctioned and dozens of people in places including Washington D.C. and North Carolina were reportedly hospitalized. In New Jersey, some 100 people were treated after attending outdoor graduation ceremonies in the extreme heat. And while summer is always hot, man-made climate change is worsening the problem. Temperatures in parts of the country are set to soar again this coming week. Megan Kirchmeier-Young, a research scientist at Environment and Climate Change Canada, told The Hill that as the planet warms up in a broader sense, extreme heat events become more likely. 'Warming, from human-caused climate change, means more days when we exceed particular temperature thresholds. Across most of the globe, hot extremes are becoming hotter and occurring more often. And we expect these trends to continue with continued global warming,' Kirchmeier-Young said in an email. 'While we do not yet have results for this week's event, Environment and Climate Change Canada's rapid event attribution system analyzed many heat waves from last summer and found that all were more likely to occur because of human-caused climate change,' she added. And not only is the entire planet warming, the Arctic is warming even faster. Because of this, said Jonathan Overpeck, dean of the School for Environment and Sustainability at the University of Michigan, the jet stream slows down and becomes curvier. 'This is where you start to get these high-pressure domes that just sit in one place longer,' he said, adding that 'these very hot events are becoming more frequent because of that; they concentrate the heat in one large region.' Michael Mann, a professor at the University of Pennsylvania's earth and environmental science department, said in an email that the heat domes being experienced by the U.S and Europe 'show that this was part of a very large-scale pattern, associated with a very 'wiggly' jet stream where the 'wiggles' stay in place for days on end.' 'It's really a double whammy, the basic effect of warming the planet, plus how the pattern of warming is changing the jet stream, giving us those stuck, weather extremes, like the heat domes,' Mann said. He's one of the authors of a paper published earlier this year that found that there has been a 'threefold increase' in such events over the last 70 years, which has been 'closely tied to amplified Arctic warming.' 'You're potentially looking at that trend simply continuing on toward quadrupling, etc., as long as we continue to warm the planet with carbon emissions,' Mann told The Hill. Kirchmeier-Young provided a different perspective, saying there's some uncertainty in how weather patterns are changing. 'The main factor for increases in the intensity and frequency of hot extremes is increasing temperatures. While specific weather patterns are important for the occurrence of any particular heat wave event, if/how these weather patterns might be changing is much more uncertain,' she said. But it's not just the heat that causes misery during a heat wave, it can also be the humidity — something that Overpeck also said is being exacerbated by climate change. 'The atmosphere, because it's warmer, it holds more moisture. And it's that combination of the higher humidity, the water in the atmosphere and the heat that really makes it bad,' he said. The world's average global temperature has already risen 1.36 degrees Celsius, or about 2.4 degrees Fahrenheit, when compared to preindustrial times, primarily due to manmade activity such as the burning of fossil fuels. But this is just a global average, and what people experience may be significantly hotter than just a few degrees. 'We still have warmer days and cooler days, but we are shifting the baseline, so the warmer days are even hotter than they used to be,' said Kirchmeier-Young. 'It will not take much warming in the global temperature to see notable changes in extremes at the regional scale.' 'The average temperature of the planet is hard to feel, but for comparison, if we cooled the planet by four to five degrees C, we'd have an ice age, and that would be a totally different planet,' said Overpeck. The heat wave came as the Trump administration is rolling back regulations meant to mitigate climate change — and as Congress prepares to repeal climate-friendly policies and incentives as part of Republicans' 'big, beautiful bill.' 'This heat wave that we're just coming out of is a great example of we're going to see more of getting even hotter and longer if we don't slow down our use and stop our use of fossil fuels and replace fossil fuels with … clean, low-carbon energy,' Overpeck said.
Yahoo
19 hours ago
- Yahoo
I Heard Jurassic World Dominion Was Bad, But I Would Watch It Over Any Other Jurassic Sequel
When you buy through links on our articles, Future and its syndication partners may earn a commission. SPOILER WARNING: The following article gives away, just about, the entire plot of Jurassic World Dominion. If you have not yet seen the 2022 Jurassic Park movie, act like Owen Grady holding up his hand to magically neutralize a dinosaur, and proceed with caution as you read on. With Jurassic World Rebirth hitting theaters soon, I figured it was about time that I do something I had been reluctant to do: catch up with the full franchise and watch Jurassic World Dominion. Considering the beastly reviews from critics and audiences, I was braving the worst, but, to my surprise, I thought it was far from it. To be clear, I would not call Colin Trevorrow's sequel a good movie. I think it suffers from a pitifully lazy script, sleepy acting, and throwing out the previous film's setup for a dinosaur-ridden dystopia in favor of, echoing Eric Eisenberg's Jurassic World Dominion review, two bland, disparate plotlines that have little to do with, ya know, dinosaurs. However, I do not at all regret watching it and would choose to watch it again over most sequels to Steven Spielberg's 1993 classic, which I realize may come as a shock to many Jurassic fans. Well, allow me to explain… In previous articles of mine, such as my reaction to the recent sci-fi thriller Companion, I have made it clear that I am a staunch technophobe who fears how dangerously technology's advancement could, or already has, affected our society. However, there is one fear of mine that I have been a bit less vocal about in my writing until now: bugs, especially ones of unusual size. So, you might be able to imagine how I felt when the genetically engineered locusts appeared on the screen. Now, I will agree with the widely shared opinion that a Jurassic Park movie focusing its plot on a non-reptilian prehistoric creature is a mistake, but said creatures did manage to get my adrenaline going faster than any of the dinosaurs that appear in Jurassic World Dominion. That being said… Whenever a dinosaur would appear on screen in Dominion, I found it nothing short of impressive. The special effects, boasting the classic blend of practical animatronics with some of the best CGI Hollywood has to offer, were so convincing, I am surprised there was not more praise about that aspect, at least. Aside from their visual effects, I felt that the action sequences involving dinosaurs are genuinely some of the best that the franchise has ever seen. I recall, in particular, being thoroughly riveted by a scene taking place in Malta, when Owen Grady (Chris Pratt) is chased on a motorcycle through the city by Atrociraptors. I had to stop and think to myself, Wow, I am actually having fun with this movie, and it did not stop there. Some have said the extended edition of Jurassic World Dominion is better than the theatrical version, but you can get both on a Blu-ray and 4K UHD set from Amazon for nearly half off the regular price!View Deal The one reason I had to be somewhat optimistic about finally watching Dominion was the one aspect that I had heard positive rumblings about: DeWanda Wise as Kayla Watts. I could not agree more with my colleague Sarah El-Mahmoud that the daredevil pilot is the best character from the Jurassic World trilogy for her bravery and quick wit, and for just being a badass. If there are any downsides to Kayla, I would say that she makes most of the other newer characters (including Mamoudou Athie's Ramsay Cole and even Pratt's Grady) look weaker than I already believed they were, and that she should have been introduced to the franchise earlier. With all due respect to Scarlett Johansson and Mahershala Ali, a part of me wishes that she were the focus of the upcoming 2025 movie, Jurassic World Rebirth, instead. Despite my harsh words about the newer Jurassic characters, I have to admit that I really enjoyed seeing them finally interact with Dr. Alan Grant (Sam Neill), Dr. Ellie Sattler (Laura Dern), and Dr. Ian Malcolm (Jeff Goldblum). In fact, I don't think I was ever amused by the OG heroes' return until that moment, as the parameters of their reunion and the moments the trio shared never felt particularly natural. And don't get me started about the random callbacks to the first film, like Lewis Dodgson (Campbell Scott) somehow possessing the fake Barbasol canister and displaying it in his office. What?! Anyway, I can't say that 'natural' is a word I would use to describe Grant, Sattler, and Malcolm's meeting with Grady, Claire Dearing (Bryce Dallas Howard), and others in the final act either. The events that lead them to each other are far too convenient (like many other aspects of the plot), and much of their dialogue feels egregiously forced. Yet, there was something about seeing them all gathered together and relying on one another to survive against the prehistoric wildlife that left me wishing the movie had dedicated more time to bringing them together. Of course, any Jurassic Park fan knows that the real draw of this franchise is not the meat, but the meat-eaters, and the one who rules them all is the Tyrannosaurus Rex. Any return by that big behemoth in these movies, no matter how convoluted the reasoning may be, is warmly welcomed by me, and its appearance in Dominion was no exception, especially since it was not alone. I actually really dug how the T-Rex was treated as a hero, Godzilla style, in the film's final act, when it teams up with a Therizinosaurus to bring down the Giganotosaurus. Watching the T-Rex throw the Giganotosaurus onto the Therizinosaurus' claws, fatally impaling it, made for a more satisfying final battle than the Indominus Rex showdown in 2015's Jurassic World, if you ask me. I don't see a future in which I ever boot up my Peacock subscription to watch Jurassic World Dominion again, unless I get curious and decide to check out the extended edition, which I hear is an improvement. Yet, I can't say I feel that I wasted my morning watching it the other day, which is something I can't say about most of the follow-ups to the original '90s movie classic, and that calls for a modest roar of applause in my book.
Yahoo
20 hours ago
- Yahoo
Scientists discover rare planet at the edge of the Milky Way using space-time phenomenon predicted by Einstein
When you buy through links on our articles, Future and its syndication partners may earn a commission. Astronomers have used a space-time phenomenon first predicted by Albert Einstein to discover a rare planet hiding at the edge of our galaxy. The exoplanet, dubbed AT2021uey b, is a Jupiter-size gas giant located roughly 3,200 light-years from Earth. Orbiting a small, cool M dwarf star once every 4,170 days, the planet's location is remarkable — it is only the third planet in the entire history of space observation to be discovered so far away from our galaxy's dense center. Yet perhaps more exceptional than the planet's location is the method used to discover it. The effect, known as microlensing, occurs when the light of a host star is magnified by the warping of space-time due to a planet's gravity. The researchers published their findings May 7 in the journal Astronomy & Astrophysics. "This kind of work requires a lot of expertise, patience, and, frankly, a bit of luck," study co-author Marius Maskoliūnas, an astronomer at Vilnius University in Lithuania, said in a statement. "You have to wait for a long time for the source star and the lensing object to align and then check an enormous amount of data. Ninety percent of observed stars pulsate for various other reasons, and only a minority of cases show the microlensing effect." Nearly 6,000 alien worlds beyond our solar system have been discovered since the first exoplanet was detected in 1992. The two most common detection methods, called transmit photometry and radial velocity, detect planets through the dimming of host stars as they pass in front of them, or from the wobble that the planets' gravitational tugs impart upon them. A rarer method, known as microlensing, is derived from Einstein's theory of general relativity and is produced by massive objects as they warp the fabric of the universe, called space-time. Gravity, Einstein discovered, isn't produced by an unseen force but by space-time curving and distorting in the presence of matter and energy. Related: James Webb telescope discovers its first planet — a Saturn-size 'shepherd' still glowing red hot from its formation This curved space, in turn, determines how energy and matter move through it. Even though light travels in a straight line, light traveling through a curved region of space-time also travels in a curve. This means that when a planet passes in front of its host star, its gravity acts as a lens — magnifying the star's light and causing its brightness to spike. "What fascinates me about this method is that it can detect those invisible bodies," Maskoliūnas said, essentially by measuring the bodies' shadows. "Imagine a bird flying past you. You don't see the bird itself and don't know what color it is — only its shadow. But from it, you can, with some level of probability, determine whether it was a sparrow or a swan and at what distance from us. It's an incredibly intriguing process." RELATED STORIES —James Webb telescope zooms in on bizarre 'Einstein ring' caused by bending of the universe —James Webb telescope uncovers 1st-ever 'Einstein zig-zag' hiding in plain sight — and it could help save cosmology —Stunning 'Einstein engagement ring' from the early universe is one of the oldest ever discovered AT2021uey b's cosmic shadow was first spotted in 2021 in data taken by the European Space Agency's Gaia telescope, revealing its presence by a momentary spike in the brightness of its host star. The astronomers then took detailed follow-up observations using Vilnius's Molėtai Astronomical Observatory, from which they calculated its source as a planet 1.3 times the mass of Jupiter. Its host star burns at about half the temperature of our own, and the gas giant sits four times farther than Earth's distance from the sun. According to the researchers, the planet's discovery so far from the Milky Way's central bulge, in a region that is comparatively sparse in heavier elements needed to form planets, offers a fresh hint of the unlikely places where planets can be found. "When the first planet around a sun-like star was discovered, there was a great surprise that this Jupiter-type planet was so close to its star," Edita Stonkutė, another Vilnius University astronomer and leader of the microlensing project that found the planet, said in the statement. "As data accumulated, we learned that many types of planetary systems are completely unlike ours — the solar system. We've had to rethink planetary formation models more than once."