Astronomers discover 'raw materials for life' can form in planetary systems even before stars
Scientists are claiming a "cosmic chemistry breakthrough" following the discovery of a large "aromatic" molecule in deep space. The discovery suggests that these molecules could help seed planetary systems with carbon, supporting the development of molecules needed for life.
The molecule, called cyanocoronene, belongs to a class of carbon-based organic compounds called polycyclic aromatic hydrocarbons (PAHs), which are made up of multiple fused aromatic rings — structures in which electrons are shared across double-bonded carbon atoms, giving them unique chemical stability.
"PAHs are thought to lock away a significant fraction of the universe's carbon and play a key role in the chemistry that leads to the formation of stars and planets," National Radio Astronomy Observatory representatives wrote in a statement. "Until now, only smaller PAHs had been detected in space, with this new discovery significantly pushing the known size limit."
The scientists determined that cyanocoronene can form efficiently in the cold conditions of space through reactions between coronene and highly reactive cyanide radicals at low temperatures.
"This means the chemistry that builds complex organics can happen even before stars are born," the researchers wrote, highlighting that such prebiotic molecules may be common ingredients in the early stages of star and planet formation.
The cyanocoronene was identified by the Green Bank Telescope (GBT), part of the National Radio Astronomy Observatory, in the Taurus Molecular Cloud (TMC-1). This star-forming region, located in the constellations Taurus and Auriga, is known for its rich and complex chemistry.
The GBT — located in Green Bank, West Virginia — is the world's largest fully steerable radio telescope. Standing 485 feet (148 meters) tall with a dish 100 meters (330 feet) in diameter, the GBT is an essential tool for detecting faint radio signals from deep space, including those emitted by molecules like cyanocoronene.
Unlike optical telescopes, which collect visible light, the GBT is designed to detect radio waves, a type of electromagnetic radiation with much longer wavelengths. These waves are often emitted by cold, dense regions of space, like the TMC-1, where new stars and complex organic molecules can form.
To identify a specific molecule in space, scientists first measure its microwave spectrum in a laboratory. Each molecule has a unique "fingerprint" — a pattern of energy transitions that appears as lines in the radio spectrum. With this information in hand, scientists use the GBT to collect radio waves and look for a match.
In the case of cyanocoronene, the researchers found multiple matching spectral lines in the GBT's data, confirming the presence of the molecule in TMC-1 with exceptional confidence far beyond the statistical chance that it would occur randomly.The discovery opens the door for astronomers and astrochemists to search for even larger PAHs and related molecules.
Scientists are now especially interested in how these structures evolve, fragment or interact with other molecules under the influence of ultraviolet light, cosmic rays and shocks in interstellar space.
"Each new detection brings us closer to understanding the origins of complex organic chemistry in the universe — and perhaps, the origins of the building blocks of life themselves," Gabi Wenzel, a research scientist in the Department of Chemistry at MIT and the Harvard and Smithsonian Center for Astrophysics and lead author of the research, said in the statement.
The research was presented earlier this month at the 246th meeting of the American Astronomical Society in Anchorage, Alaska.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
5 hours ago
- Yahoo
An enormous 'X' and 'V' will grace the moon's surface on July 2. Here's how to see them
When you buy through links on our articles, Future and its syndication partners may earn a commission. The nights surrounding the first quarter moon phase on July 2 present a good opportunity to spot colossal 'X' and 'V' features emblazoned on the lunar surface. This month's first quarter phase occurs at 11:41 p.m. EDT on July 2 (0341 GMT on July 3), at which time the right side of the half-lit lunar disk will be illuminated by direct sunlight from the perspective of viewers in the northern hemisphere on Earth. At this time, the sun shines at such an angle to make it appear as if there is a gigantic 'V' and 'X' marking the barren lunar surface. This kind of phenomenon is referred to as a 'clair-obscur' effect and occurs when the interplay between light and shadow leads to the chance formation of familiar shapes on the moon's craggy terrain. The lunar letters are visible for roughly four hours in the run-up to each first quarter moon phase and are at their most impressive when seen just on the 'night' side of the terminator, with their upper reaches kissed by the sun's light. Try and find the lunar 'X' and 'V' on the lunar disk at sunset on July 2 and be sure to keep checking back to see how these shapes evolve over time. If you miss the letters on the night side of the terminator, there's no need to lose hope, as they'll continue to be visible for a brief period after they pass to the 'day side' of the moon. The lunar X is an optical effect formed when sunlight strikes elevated rim sections of the Bianchini, Purbach and La Caille Craters around the first quarter moon phase, according to stargazing website The feature can be found around 25 degrees south of the lunar equator close to the terminator, which is the line separating the dayside and nightside of the moon, close to the prominent Werner and Aliacensis Craters. To find the lunar 'V', moongazers must follow the line of the terminator up to a point less than 10 degrees above the lunar equator to find the partially shadowed form of the Ukert Crater. Both objects can be spotted through a small backyard telescope with a 6-inch aperture, though a larger scope will help resolve detail in the myriad craters and broken terrain dotting the surrounding moonscapes. TOP TELESCOPE PICK Want to see the lunar X and V? The Celestron NexStar 4SE is ideal for beginners wanting quality, reliable and quick views of celestial objects. For a more in-depth look at our Celestron NexStar 4SE review. Stargazers interested in exploring the lunar surface should check out our guides to the best telescopes and binoculars available in 2025. Photographers interested in capturing the moon's surface should also read our roundup of the best cameras and lenses for astrophotography. This article was updated at 3:10 a.m. EDT (0810 GMT) on July 2 to change 'June 2' to the correct date of 'July 2'. Editor's Note: If you capture a picture of the letters on the moon and want to share it with readers, then please send your photo(s), comments, and your name and location to spacephotos@
Yahoo
12 hours ago
- Yahoo
Space calendar 2025: Rocket launches, skywatching events, missions & more!
When you buy through links on our articles, Future and its syndication partners may earn a commission. 2025 is a busy year for spaceflight and exploration with countless launches, mission milestones, industry conventions and skywatching events to look forward to. With so much going on, it's hard to keep track of everything. Never fear — keep up with the latest events in our 2025 space calendar. You can also Find out what's up in the night sky this month with our visible planets guide and skywatching forecast. Please note: Launch dates are subject to change and will be updated throughout the year as firmer dates arise. Please DO NOT schedule travel based on a date you see here. Launch dates are collected from NASA events, ESA news, Roscosmos space launch schedule, Spaceflight Now launch schedule, Everyday Astronaut, Supercluster and others. Related: Wondering what happened today in space history? Check out our "On This Day in Space" video! Is there a rocket launch today?
Yahoo
15 hours ago
- Yahoo
Astonishing 'halo' of high-energy particles around giant galaxy cluster is a glimpse into the early universe
When you buy through links on our articles, Future and its syndication partners may earn a commission. A vast cloud of energetic particles surrounding a cluster of galaxies that existed around four billion years after the Big Bang could help scientists discover how the early universe took shape. But was the halo of the massive cluster of galaxies — called SpARCS104922.6+564032.5, and located 9.9 billion light-years from Earth— built by erupting supermassive black holes or a cosmic particle accelerator? This envelope of radio-emitting particles — a so-called "radio mini-halo," though it isn't really mini at all — is the most distant example of such a structure ever detected. Its distance is double that of the next farthest radio mini-halo, with its radio signal having taken 10 billion years to reach Earth — the majority of the universe's 13.8 billion-year lifespan. The discovery, made with the LOFAR (LOw Frequency ARray) radio instrument in Europe, indicates that galaxy clusters, which are some of the largest structures in the known universe, spend most of their existence wrapped in envelopes of high-energy particles. This insight gives scientists a better idea of how energy flows around galaxy clusters. And that in turn could improve our picture of cosmic evolution, study members said. "It's astonishing to find such a strong radio signal at this distance," study co-leader Roland Timmerman, an astronomer at Durham University in England, said in a statement. "It means these energetic particles and the processes creating them have been shaping galaxy clusters for nearly the entire history of the universe." The team posited two possible explanations for the formation of this mini-halo. One possibility is that the supermassive black holes at the hearts of the galaxies in the cluster are ejecting jets of high-energy particles and settling around their home cluster. One problem with this theory, however, is explaining how these particles have managed to maintain their energy as they take their place in a gigantic cloud. The second possible explanation is the existence of a natural particle collider around the galactic cluster. Particles in the hot ionized gas, or plasma, around the cluster may be slamming together at near light-speeds, resulting in the highly energetic particles in the halo. Related Stories: — This baby galaxy cluster is powering extreme star formation with a hidden fuel tank — Our expanding universe: Age, history & other facts — World's largest visible light telescope spies a galaxy cluster warping space-time The team behind the new research believes their results offer a rare chance to observe a galaxy cluster just after it has formed. It also suggests that galactic clusters are filled with energetic particles for billions of years longer than had previously been thought. And further study of this distant radio mini-halo should reveal just where these charged particles originated, according to the scientists. The team's research has been accepted for publication in the Astrophysical Journal Letters, with a preprint version available on the research repository arXiv.