logo
A New Study Revealed That Energy Drinks May Boost Cancer Growth. Here's What To Know

A New Study Revealed That Energy Drinks May Boost Cancer Growth. Here's What To Know

Yahoo28-05-2025
"Hearst Magazines and Yahoo may earn commission or revenue on some items through these links."
A new study in Nature shows that energy drinks contain an ingredient that may increase cancer cell growth.
This is mostly important to know if you already have certain types of cancer.
Here's what else you should be aware of, according to experts.
If you've ever pulled a late night at the college library or at your office, you may have reached for an energy drink or two for a little boost. But aside from their super high caffeine content, new research has uncovered a link between a common ingredient in energy drinks and the growth of certain cancer cells.
An important caveat: The study didn't find that energy drinks will give you cancer. Rather, it suggests that the common energy drink ingredient taurine can fuel the growth of cancerous cells if you already have certain types of cancer.
Here's what doctors want you to keep in mind, based on these findings.
Meet the experts: Wael Harb, MD, hematologist and medical oncologist at MemorialCare Cancer Institute at Orange Coast and Saddleback Medical Centers in Orange County, CA; Jeevisha Bajaj, PhD, study co-author, an assistant professor in the Department of Biomedical Genetics, and a cancer researcher at the Wilmot Cancer Institute at the University of Rochester
In the study, which was published in the journal Nature, researchers tried to stop leukemia, a type of cancer that impacts the bone marrow and blood, from growing in human cancer cells and mouse models. The researchers used genetic tools to block taurine—a common ingredient in energy drinks like Red Bull, Monster, and Rockstar—from entering leukemia cells. That cut off a resource that the cancer needed to survive.
'As we were charactering the changes taking place in non-cancer 'normal' non-blood forming cells in that environment, we discovered that taurine can be produced by bone-forming cells,' says study co-author Jeevisha Bajaj, PhD, an assistant professor in the Department of Biomedical Genetics and a cancer researcher at the Wilmot Cancer Institute at the University of Rochester. 'Our body makes taurine naturally, but it was new information to find that it was produced in this way in the bone marrow.'
The researchers then found that when they blocked taurine from entering leukemia cells, the disease outcome improved.
Taurine can be used by leukemia cells to encourage metabolic changes, including the breakdown of glucose (blood sugar) to create energy, Bajaj says. 'Metabolic changes are changes in cells that provide energy or fuel for its functions,' she adds. Basically, leukemia cells use taurine for energy.
'The cancer cells can hijack the taurine to fuel their growth,' says Wael Harb, MD, a hematologist and medical oncologist at MemorialCare Cancer Institute at Orange Coast and Saddleback Medical Centers in Orange County, CA. 'They use taurine to help them multiply more quickly.'
Taurine is a naturally-occurring amino acid that may help regulate blood pressure, improve cardiac fitness, and enhance a person's vascular health. It may also have some anti-aging properties. 'It's also found in many foods and popular energy drinks,' Dr. Harb says.
Taurine is 'generally safe' to have in energy drinks, Dr. Harb says. However, it may help some cancerous cells to grow more quickly. 'That doesn't mean that taurine causes cancer,' he says. 'But in people who already have cancer, it may fuel it.'
As a result, doctors say you don't need to stop drinking energy drinks if you're healthy. The researchers agree. 'We do not have any evidence that taurine, or any other ingredient in energy drinks, can increase the risk of leukemia in healthy people,' Bajaj says.
If you have leukemia, Harb recommends talking to your doctor about whether you have energy drinks and how often. 'But more research is still needed on how to manage taurine with cancer care,' he says.
You Might Also Like
Jennifer Garner Swears By This Retinol Eye Cream
These New Kicks Will Help You Smash Your Cross-Training Goals
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Physicists Create First-Ever Antimatter Qubit, Making the Quantum World Even Weirder
Physicists Create First-Ever Antimatter Qubit, Making the Quantum World Even Weirder

Gizmodo

time10 hours ago

  • Gizmodo

Physicists Create First-Ever Antimatter Qubit, Making the Quantum World Even Weirder

Readers following our existential physics coverage may remember a recent breakthrough from CERN concerning matter's evil twin, antimatter. An outstanding mystery in physics is that our universe contains more matter than antimatter, contradicting most theoretical predictions. Scientists, therefore, understandably want to explain why and how this is the case. CERN announced yet another significant leap for studying antimatter—and this time, the achievement creeps into the realm of quantum computing. In a Nature paper published on July 23, CERN's Baryon Antibaryon Symmetry Experiment (BASE) collaboration announced the first-ever demonstration of an antimatter quantum bit, or qubit—the smallest unit of information for quantum computers. The qubit in question is an antiproton, a proton's antimatter counterpart, caught in a curious quantum swing—arcing back and forth between 'up' and 'down' spin states in perfect rhythm. The oscillation lasted for 50 seconds. The technical prowess that enabled this result represents a significant leap forward in our understanding of antimatter, the researchers claim. For the experiment, the team applied a technique called coherent quantum transition spectroscopy, which measures—with chilling precision—a particle's magnetic moment, or its behavior inside magnetic fields. First, the team brought in some antiprotons from CERN's antimatter factory, trapping the particles in an electromagnetic Penning trap—a superposition of magnetic fields. Next, they set up a second multi-trap inside the same magnet, extracting individual antiprotons to measure and tweak the particle's spin states in the process. Quantum states are fragile and easily disturbed by outside distractions. The wrong push can immediately send them spiraling down the drain toward decoherence—at which point the system loses the valuable information physicists hope to find. This fundamental limitation of quantum systems was a major concern for the BASE collaboration, who in 2017 used a similar setup to the new experiment to confirm that protons and antiprotons had practically identical magnetic moments. The team made substantial revisions to its technology, paying special attention to developing the mechanisms needed to suppress and eliminate decoherence. This hard work paid off; the antiproton performed a stable quantum swing for 50 seconds—a motion akin to how qubits exist in superpositions of states, which theoretically could allow them to store exponential loads of information. Additionally, it marked the first time physicists observed this phenomenon in a single free nuclear magnetic moment, whereas previous experiments had only seen it in large groups of particles. 'This represents the first antimatter qubit and opens up the prospect of applying the entire set of coherent spectroscopy methods to single matter and antimatter systems in precision experiments,' BASE spokesperson Stefan Ulmer said in a statement. That said, the team doesn't believe the new results will introduce antimatter qubits to quantum computing, at least not anytime soon. 'It does not make sense to use [the antimatter qubit] at the moment for quantum computers, because, simply speaking, engineering related to production and storage of antimatter is much more difficult than for normal matter,' Latacz explained, adding that since matter and antimatter are known to share fundamental properties, opting for the latter wouldn't make practical sense. 'However, if in the future [we find] that antimatter behaves differently than matter, then it may be interesting to consider this.' There are additional improvements the team hopes to make, which will happen sometime very soon, Latacz said. The upgrades to BASE—termed BASE-STEP—will greatly improve our capacity to study antiprotons with higher precision and allow us to 'improve the measurement of the magnetic moment of the antiproton by at least a factor of 10, and in a longer perspective even a factor of 100,' she said. The new breakthrough could contribute to engineering advances in quantum computing, atomic clocks, and other areas. But as the researchers emphasize, such technological applications aren't anything we should expect any time soon. Nevertheless, the result itself presents some fascinating lessons for fundamental physics—questions that may take years to answer, but to quote physicist Sean Carroll from the other recent CERN finding, 'Well, it's a small part of a much bigger puzzle—but you know, every part matters.'

CRISPR can stop malaria spread by editing a single gene in mosquitos
CRISPR can stop malaria spread by editing a single gene in mosquitos

Engadget

time16 hours ago

  • Engadget

CRISPR can stop malaria spread by editing a single gene in mosquitos

CRISPR gene-editing therapy has shown great potential to treat and even cure diseases, but scientists are now discovering how it can be used to prevent them as well. A team of researchers found a way to edit a single gene in a mosquito that prevented it from transmitting malaria, according to a paper published in Nature . These genetically modified mosquitos could eventually be released into the wild, helping prevent some of the 600,000 malaria deaths that occur each year. Mosquitos infect up to 263 million people yearly with malaria and efforts to reduce their populations have stalled as late. That's because both the mosquitos and their parasites that spread malaria have developed resistance to insecticides and other drugs. Now, biologists from UC San Diego, Johns Hopkins and UC Berkeley universities have figured out a way to stop malarial transmission by changing a single amino acid in mosquitos. The altered mosquitos can still bite people with malaria and pick up parasites from their blood, but those can no longer be spread to others. The system uses CRISPR-Cas9 "scissors" to cut out an unwanted amino acid (allele) that transmits malaria and replace it with a benign version. The undesirable allele, called L224, helps parasites swim to a mosquito's salivary glands where they can then infect a person. The new amino acid, Q224, blocks two separate parasites from making it to the salivary glands, preventing infection in people or animals. "With a single, precise tweak, we've turned [a mosquito gene component] into a powerful shield that blocks multiple malaria parasite species and likely across diverse mosquito species and populations, paving the way for adaptable, real-world strategies to control this disease," said researcher George Dimopoulos from Johns Hopkins University. Unlike previous methods of malarial control, changing that key gene doesn't affect the health or reproduction capabilities of mosquitos. That allowed the researchers to create a technique for mosquito offspring to inherit the Q224 allele and spread it through their populations to stop malarial parasite transmission in its tracks. "We've harnessed nature's own genetic tools to turn mosquitoes into allies against malaria," Dimopoulos said. If you buy something through a link in this article, we may earn commission.

Llamas could help treat schizophrenia: study
Llamas could help treat schizophrenia: study

New York Post

time17 hours ago

  • New York Post

Llamas could help treat schizophrenia: study

Talk about a llama-zing discovery. They're known for their fluffy furs and sassy stares, but scientists have discovered that llamas may also be the key to treating schizophrenia. And this isn't even the first time this year that llamas have been at the heart of curing a scary health issue. Advertisement They're known for their fluffy furs and sassy stares, but it turns out llamas may also be the key to treating schizophrenia. Cavan for Adobe – In a mind-blowing new study, French researchers have developed a molecule from llama antibodies that could one day help patients with schizophrenia overcome cognitive deficits — a major hurdle that existing treatments fail to address. Scientists at the Institute of Functional Genomics in Montpellier have engineered what's called a nanobody — a tiny antibody fragment found in camelids like llamas — that can activate a specific glutamate receptor responsible for brain signaling. What's more, this molecule can cross the blood-brain barrier — a major challenge in drug development — and go straight to work on neural receptors when injected via a vein or muscle. Advertisement Researchers tested the llama-derived nanobody in two preclinical models of schizophrenia. Just one injection was enough to boost brainpower in mice, showing a clear and sustained improvement in cognitive function for up to a week. More research will be needed to see if this presents a promising new avenue of treatment for schizophrenia and, if so, whether or not this can be expanded to treat other psychiatric and neurodegenerative diseases. Advertisement The findings were published Wednesday in the journal Nature. Schizophrenia is a chronic mental disorder that affects how people perceive reality, leading to hallucinations, delusions, disorganized thinking and speech, paranoia and time gaps. elnariz – Schizophrenia is a chronic mental disorder that affects how people perceive reality, leading to hallucinations, delusions, disorganized thinking and speech, paranoia and time gaps. More than 200,000 people in the US are living with schizophrenia, for which there is no cure. Advertisement The cause of schizophrenia is still unknown, but research suggests a combination of genetic and environmental factors are likely to encourage its onset, which typically occurs between the ages of 16 and 30. Schizophrenia is primarily treated with antipsychotics, which target some of the more severe symptoms like hallucinations and delusions, but fail to do much for cognitive function. This new study offers hope for repairing cognition, as opposed to simply managing symptoms. 'In humans obviously we don't know [yet], but in mice yes, it is sufficient to treat most deficits of schizophrenia,' paper author and CNRS molecular biologist Jean-Philippe Pin told Newsweek. 'For development as a therapeutic tool, more safety and bioavailability studies are needed. Production of large quantities of high quality must be set up to start human studies. For these two possibilities, either a company takes up our project or we find investors to create a startup company.' Meanwhile, another study published last month found that llamas may also hold the secret weapon to curing COVID — and it's also in their nanobodies. 'This work provides a strong foundation for developing next-generation antibodies that could be vital in combating not only current but also future coronavirus threats,' said Dr. Xavier Saelens, senior author of the study and a principal investigator at the VIB-UGent Center for Medical Biotechnology in Belgium.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store