logo
'Unlike any objects we know': Scientists get their best-ever view of 'space tornadoes' howling at the Milky Way's center

'Unlike any objects we know': Scientists get their best-ever view of 'space tornadoes' howling at the Milky Way's center

Yahoo25-03-2025

When you buy through links on our articles, Future and its syndication partners may earn a commission.
"Space tornadoes" are swirling near the supermassive black hole at the heart of our Milky Way galaxy, new telescope observations have revealed in unprecedented detail.
Astronomers recently zoomed in on the cosmic twisters using the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile. Although these rotating structures had been seen previously, the new observations with ALMA are 100 times sharper than the earlier views, the team reported in a new paper published in the journal Astronomy & Astrophysics.
The researchers began by pointing ALMA at a region of the galaxy known as the central molecular zone (CMZ), which surrounds our galaxy's core supermassive black hole and is filled with seething clouds of dust and gas. The team wanted to uncover the mechanism driving the relentless motion of these clouds.
Related: High-school student accidentally discovers black hole 'light echo' twice as wide as the Milky Way
They used ALMA to trace certain molecular compounds — such as silicon monoxide, which is particularly good at revealing shock waves — within the maelstrom. This allowed the team to detect previously unseen details in the cosmic dust storms — including a new type of long, slender filament that seems to form when shock waves ripple past.
"Unlike any objects we know, these filaments really surprised us," because they appear to move quickly and in a direction counter to the structures surrounding them, Kai Yang, an astronomer at Shanghai Jiao Tong University and lead author of the study, said in a statement.
The researchers describe these filaments as space tornadoes. "They are violent streams of gas, they dissipate quickly, and they distribute materials into the environment efficiently," the authors said in the statement. The team's observations suggest that, in addition to emitting silicon oxide, these whirlwinds might disperse complex organic molecules — such as methanol, methyl cyanide and cyanoacetylene — throughout the CMZ and beyond.
RELATED STORIES
—'Extremely Large Telescope' being built in Chile could detect signs of alien life in a single night
—'Potentially hazardous' pyramid-size asteroid will make its closest flyby of Earth for more than 100 years this Wednesday
—Stephen Hawking's black hole theory has big implications for the shape of the universe, new study claims
"ALMA's high angular resolution and extraordinary sensitivity were essential to detect these molecular line emission associated with the slim filaments, and to confirm that there is no associations between these structures with dust emissions," Yichen Zhang, an astrophysicist at Shanghai Jiao Tong University and a co-author of the paper, said in a statement.
Further observations with ALMA will help the researchers determine how widespread these slim filaments are within the CMZ and how they contribute to molecular cycling in the region.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Rubin Observatory's Stunning Result Proves It's a ‘Game Changer' for Spotting Dangerous Asteroids
Rubin Observatory's Stunning Result Proves It's a ‘Game Changer' for Spotting Dangerous Asteroids

Gizmodo

time14 hours ago

  • Gizmodo

Rubin Observatory's Stunning Result Proves It's a ‘Game Changer' for Spotting Dangerous Asteroids

Astronomers usually keep their eyes on the sky, but on Monday, June 23, the community turned its attention toward Washington, D.C., as scientists from the Vera C. Rubin Observatory unveiled the telescope's first images. Many have waited more than 20 years to see Rubin in action, and its initial findings did not disappoint. Rubin, a joint initiative of the National Science Foundation (NSF) and the Department of Energy's (DOE) Office of Science, recently conducted its first 10 hours of test observations. In just that short period, the observatory produced dazzling images and discovered more than 2,000 previously unknown asteroids, including seven near-Earth asteroids. None of them pose a threat to our planet, but through this wealth of new data, the observatory has already proved to be a game changer for asteroid hunters working on planetary defense. By conducting unprecedentedly fast and detailed surveys of the entire southern sky, Rubin will allow scientists to find and track more space rocks than ever before. 'As this camera system was being designed, we all knew it was going to be breathtaking in what it delivered, but this has exceeded all our expectations,' Richard Binzel, a professor of planetary sciences at the Massachusetts Institute of Technology (MIT) and inventor of the Torino Scale—a tool for categorizing potential Earth impact events—told Gizmodo. Data on those 2,000 new asteroids went directly to the International Astronomical Union's Minor Planet Center (MPC), the globally recognized organization responsible for cataloging and disseminating data on asteroids, comets, and other small celestial bodies. It plays an essential role in the early detection and monitoring of asteroids that threaten Earth. The MPC has spent years preparing for the deluge of data from Rubin, ramping up its software to process massive amounts of observations. When the first round officially came flooding in on Monday, it was 'nerve-racking and exciting simultaneously,' Matthew Payne, MPC director, told Gizmodo. This was just a taste of what's to come. In a few months, Rubin will begin the Legacy Survey of Space and Time (LSST), a decade-long, near-continuous survey of the southern sky. This will produce an ultrawide, ultra-high-definition time-lapse record of the universe. In terms of asteroids, that means the MPC will receive about 250 million observations per year from LSST, according to Payne. 'For us, that's a game changer in the total amount of data that we're getting, because at the moment we get somewhere in the region of 50 to 60 million a year,' he said. Rubin's remarkable abilities stem from its remarkable instruments. Equipped with a unique three-mirror telescope design and the largest digital camera ever built, this observatory can conduct all-sky surveys while still detecting very faint objects like asteroids. This bridges a key gap between existing technologies, Payne explained. When hunting space rocks, 'you need to go as deep as possible,' Peter Veres, an MPC astrophysicist, told Gizmodo. 'That's what the LSST does, and none of the survey telescopes in the world that aim at planetary defense do that.' During this 10-year survey, Rubin will observe the cosmos on an automated schedule using its 27.6-foot (8.4-meter) Simonyi Survey telescope. Each 30-second exposure will cover an area about 45 times the size of the full Moon. Then, the enormous LSST camera will capture wide-field images and stitch them together to create a complete view of the southern sky every three nights. The combination of Rubin's huge field of view, short exposure time, and its ability to rapidly sweep the sky will yield an avalanche of asteroid discoveries, Veres explained. In 2005, Congress ordered NASA to build a near-Earth object (NEO) survey program to detect, track, catalogue, and characterize the physical characteristics of all near-Earth asteroids and comets at least 328 feet (100 meters) in diameter. If one of these objects struck our planet, it would cause mass destruction that would decimate life on a continental scale, Payne said. The goal was to find 90% of them by 2020, but current estimates show NASA has only found about 40%, he explained. LSST could help NASA pick up the pace. 'It's just going to start revolutionizing our understanding of this population of things,' Payne said. Binzel agrees. 'Those objects are out there, whether we see them or not,' he said. 'Now we're going to see them, and we'll be able to determine that most—if not all of them—are going to safely pass by the Earth in the coming decades. But the best news is if an object has our name on it already, we will be able to find it most likely many, many years—if not decades—before it would come toward Earth.' In theory, that would give NASA's Planetary Defense Coordination Office (PDOC) time to launch a mission to intercept the asteroid. PDOC is still developing this capability, but in 2022, it launched the Double Asteroid Redirection Test (DART) mission, which sent a spacecraft on a 10-month-long journey to collide with the asteroid moonlet Dimorphos. The collision successfully changed Dimorphos' orbital path, demonstrating NASA's ability to deflect a large asteroid away from Earth if given enough time. Given Rubin's clear potential to revolutionize planetary defense efforts—and the global attention it has received—one would expect NASA to be singing its praises. That has not been the case. The agency has kept strangely quiet about the observatory's launch—and in fact, it appears to be ignoring Rubin's first discoveries altogether. 'It's a warp drive version of finding asteroids,' Keith Cowing, an astrobiologist and former NASA employee who now serves as editor of NASA Watch, told Gizmodo. 'You'd think that the planetary defense people would be in the front row cheering it on, saying, 'send me the data!'' NASA did not share any public information about Monday's event and has not promoted the observatory's findings. When Gizmodo reached out for comment on Rubin's contributions to planetary science and defense, NASA declined and recommended reaching out to the observatory instead. On Tuesday, June 24, the agency's Office of the Inspector General published a report on the implementation and management of NASA's planetary defense strategy. The report only briefly mentions Rubin alongside NASA's forthcoming NEO Surveyor, a space telescope designed to find asteroids that could hit Earth. 'These new observatories are expected to find and track significantly more NEOs than current capabilities, which will likely mean a substantial increase in necessary follow-up observations,' the report states. NASA's PDCO and its planetary science program will undoubtedly use data gathered by the LSST, so what's with the cold shoulder? Cowing thinks it's a symptom of the agency's inner turmoil. 'They're jittery at NASA,' he said. 'Their budgets are being cut from all sides—they don't know what the final budget will be, but the White House wants to slash it—and they're having to react to this with whatever is at hand.' Indeed, President Donald Trump's 2026 budget proposal would cut NASA's science funding by a whopping 47%, potentially killing more than 40 missions, according to The Planetary Society. 'The only good news is what didn't get shot,' Cowing said. He suspects that most NASA employees—including planetary defense personnel—are in survival mode. 'What do you do when you simply don't know if you'll have a job, if the person next to you will have a job, or if you're gonna need to compete for the same job?' Cowing asked. 'That's what's at the heart of this. It's just this general malaise and fear, and people are simply not doing the routine, professional, collaborative, collegial work that they would do across agencies and countries.' As NASA science crumbles, it's unclear whether the agency will have the resources and personnel to take full advantage of Rubin's data. Though the PDCO currently leads the world's planetary defense efforts, that could soon change. Binzel, however, is optimistic. 'Great nations do great science,' he said. 'I continue to have faith that our nation will continue to do great science.

I Heard Jurassic World Dominion Was Bad, But I Would Watch It Over Any Other Jurassic Sequel
I Heard Jurassic World Dominion Was Bad, But I Would Watch It Over Any Other Jurassic Sequel

Yahoo

timea day ago

  • Yahoo

I Heard Jurassic World Dominion Was Bad, But I Would Watch It Over Any Other Jurassic Sequel

When you buy through links on our articles, Future and its syndication partners may earn a commission. SPOILER WARNING: The following article gives away, just about, the entire plot of Jurassic World Dominion. If you have not yet seen the 2022 Jurassic Park movie, act like Owen Grady holding up his hand to magically neutralize a dinosaur, and proceed with caution as you read on. With Jurassic World Rebirth hitting theaters soon, I figured it was about time that I do something I had been reluctant to do: catch up with the full franchise and watch Jurassic World Dominion. Considering the beastly reviews from critics and audiences, I was braving the worst, but, to my surprise, I thought it was far from it. To be clear, I would not call Colin Trevorrow's sequel a good movie. I think it suffers from a pitifully lazy script, sleepy acting, and throwing out the previous film's setup for a dinosaur-ridden dystopia in favor of, echoing Eric Eisenberg's Jurassic World Dominion review, two bland, disparate plotlines that have little to do with, ya know, dinosaurs. However, I do not at all regret watching it and would choose to watch it again over most sequels to Steven Spielberg's 1993 classic, which I realize may come as a shock to many Jurassic fans. Well, allow me to explain… In previous articles of mine, such as my reaction to the recent sci-fi thriller Companion, I have made it clear that I am a staunch technophobe who fears how dangerously technology's advancement could, or already has, affected our society. However, there is one fear of mine that I have been a bit less vocal about in my writing until now: bugs, especially ones of unusual size. So, you might be able to imagine how I felt when the genetically engineered locusts appeared on the screen. Now, I will agree with the widely shared opinion that a Jurassic Park movie focusing its plot on a non-reptilian prehistoric creature is a mistake, but said creatures did manage to get my adrenaline going faster than any of the dinosaurs that appear in Jurassic World Dominion. That being said… Whenever a dinosaur would appear on screen in Dominion, I found it nothing short of impressive. The special effects, boasting the classic blend of practical animatronics with some of the best CGI Hollywood has to offer, were so convincing, I am surprised there was not more praise about that aspect, at least. Aside from their visual effects, I felt that the action sequences involving dinosaurs are genuinely some of the best that the franchise has ever seen. I recall, in particular, being thoroughly riveted by a scene taking place in Malta, when Owen Grady (Chris Pratt) is chased on a motorcycle through the city by Atrociraptors. I had to stop and think to myself, Wow, I am actually having fun with this movie, and it did not stop there. Some have said the extended edition of Jurassic World Dominion is better than the theatrical version, but you can get both on a Blu-ray and 4K UHD set from Amazon for nearly half off the regular price!View Deal The one reason I had to be somewhat optimistic about finally watching Dominion was the one aspect that I had heard positive rumblings about: DeWanda Wise as Kayla Watts. I could not agree more with my colleague Sarah El-Mahmoud that the daredevil pilot is the best character from the Jurassic World trilogy for her bravery and quick wit, and for just being a badass. If there are any downsides to Kayla, I would say that she makes most of the other newer characters (including Mamoudou Athie's Ramsay Cole and even Pratt's Grady) look weaker than I already believed they were, and that she should have been introduced to the franchise earlier. With all due respect to Scarlett Johansson and Mahershala Ali, a part of me wishes that she were the focus of the upcoming 2025 movie, Jurassic World Rebirth, instead. Despite my harsh words about the newer Jurassic characters, I have to admit that I really enjoyed seeing them finally interact with Dr. Alan Grant (Sam Neill), Dr. Ellie Sattler (Laura Dern), and Dr. Ian Malcolm (Jeff Goldblum). In fact, I don't think I was ever amused by the OG heroes' return until that moment, as the parameters of their reunion and the moments the trio shared never felt particularly natural. And don't get me started about the random callbacks to the first film, like Lewis Dodgson (Campbell Scott) somehow possessing the fake Barbasol canister and displaying it in his office. What?! Anyway, I can't say that 'natural' is a word I would use to describe Grant, Sattler, and Malcolm's meeting with Grady, Claire Dearing (Bryce Dallas Howard), and others in the final act either. The events that lead them to each other are far too convenient (like many other aspects of the plot), and much of their dialogue feels egregiously forced. Yet, there was something about seeing them all gathered together and relying on one another to survive against the prehistoric wildlife that left me wishing the movie had dedicated more time to bringing them together. Of course, any Jurassic Park fan knows that the real draw of this franchise is not the meat, but the meat-eaters, and the one who rules them all is the Tyrannosaurus Rex. Any return by that big behemoth in these movies, no matter how convoluted the reasoning may be, is warmly welcomed by me, and its appearance in Dominion was no exception, especially since it was not alone. I actually really dug how the T-Rex was treated as a hero, Godzilla style, in the film's final act, when it teams up with a Therizinosaurus to bring down the Giganotosaurus. Watching the T-Rex throw the Giganotosaurus onto the Therizinosaurus' claws, fatally impaling it, made for a more satisfying final battle than the Indominus Rex showdown in 2015's Jurassic World, if you ask me. I don't see a future in which I ever boot up my Peacock subscription to watch Jurassic World Dominion again, unless I get curious and decide to check out the extended edition, which I hear is an improvement. Yet, I can't say I feel that I wasted my morning watching it the other day, which is something I can't say about most of the follow-ups to the original '90s movie classic, and that calls for a modest roar of applause in my book.

Hello, neighbor! See the Andromeda galaxy like never before in stunning new image from NASA's Chandra telescope (video)
Hello, neighbor! See the Andromeda galaxy like never before in stunning new image from NASA's Chandra telescope (video)

Yahoo

timea day ago

  • Yahoo

Hello, neighbor! See the Andromeda galaxy like never before in stunning new image from NASA's Chandra telescope (video)

When you buy through links on our articles, Future and its syndication partners may earn a commission. The galaxy next door to the Milky Way, Andromeda, has never looked as stunning as it does in a new image from NASA's Chandra X-ray space telescope. The image of the galaxy, also known as Messier 31 (M31), was created with assistance from a range of other space telescopes and ground-based instruments including the European Space Agency (ESA) XMM-Newton mission, NASA's retired space telescopes GALEX and the Spitzer Space Telescope as well as the Infrared Astronomy Satellite, COBE, Planck, and Herschel, in addition to radio data from the Westerbork Synthesis Radio Telescope. All these instruments observed Andromeda in different wavelengths of light across the electromagnetic spectrum, with astronomers bringing this data together to create a stunning and intricate image. The image is a fitting tribute to astronomer Vera C. Rubin, who was responsible for the discovery of dark matter thanks to her observations of Andromeda. As the closest large galaxy to the Milky Way, at just around 2.5 million light-years away, Andromeda has been vital in allowing astronomers to study aspects of galaxies that aren't accessible from our own galaxy. For example, from inside the Milky Way, we can't see our galaxy's spiral arms, but we can see the spiral arms of Andromeda. Every wavelength of light that was brought together to create this incredible new image of Andromeda tells astronomers something different and unique about the galaxy next door. For example, the X-ray data provided by Chandra has revealed the high-energy radiation released from around Andromeda's central supermassive black hole, known as M31*. M31* is considerably larger than the supermassive black hole at the heart of the Milky Way, known as Sagittarius A* (Sgr A*). While our home supermassive black hole has a mass 4.3 million times that of the sun, M31* dwarfs it with a mass 100 million times that of the sun. M31* is also notable for its occasional flares, one of which was observed in X-rays back in 2013, while Sgr A* is a much "quieter" black hole. Andromeda was chosen as a tribute to Rubin because this neighboring galaxy played a crucial role in the astronomer's discovery of a missing element of the universe. An element that we now call dark matter. In the 1960s, Rubin and collaborators precisely measured the rotation of Andromeda. They found that the speed at which this galaxy's spiral arms spun indicated that the galaxy was surrounded by a vast halo of an unknown and invisible form of matter. The mass of this matter provided the gravitational influence that was preventing Andromeda from flying apart due to its rotational speed. The gravity of its visible matter wouldn't have been sufficient to hold this galaxy then, astronomers have discovered that all large galaxies seem to be surrounded by similar haloes of what is now known as dark matter. This has led to the discovery that the matter which comprises all the things we see around us — stars, planets, moons, our bodies, next door's cat — accounts for just 15% of the "stuff" in the cosmos, with dark matter accounting for the other 85%. The finding has also prompted the search for particles beyond the standard model of particle physics that could compose dark matter. Thus, there's no doubt that Rubin's work delivered a watershed moment in astronomy, and one of the most important breakthroughs in modern science, fundamentally changing our concept of the universe. Related Stories: — How did Andromeda's dwarf galaxies form? Hubble Telescope finds more questions than answers — The Milky Way may not collide with neighboring galaxy Andromeda after all: 'From near-certainty to a coin flip' — Gorgeous deep space photo captures the Andromeda Galaxy surrounded by glowing gas June 2025 has been a brilliant month of recognition of Rubin's immense impact on astronomy and her lasting legacy. In addition to this tribute image, the Vera C. Rubin Observatory released its first images of the cosmos as it gears up to conduct a 10-year observing program of the southern sky called the Legacy Survey of Space and Time (LSST). Additionally, in recognition of Rubin's monumental contributions to our understanding of the universe, the United States Mint recently released a quarter featuring Rubin as part of its American Women Quarters Program. She is the first astronomer to be honored in the series.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store