logo
Pluto's 'extreme cousin' is a dwarf planet found at the far reaches of our solar system

Pluto's 'extreme cousin' is a dwarf planet found at the far reaches of our solar system

USA Today24-05-2025
Pluto's 'extreme cousin' is a dwarf planet found at the far reaches of our solar system Astrophysicists have found a new planet, smaller than Pluto and considered that dwarf planet's 'extreme cousin' in a far-away part of the solar system thought to be empty.
Show Caption
Hide Caption
James Webb captures Jupiter's shimmering aurora
NASA'S James Webb Space Telescope captured new details of auroras on Jupiter.
Earth has a newly-discovered neighbor in the solar system.
But the heavenly body – possibly a dwarf planet à la Pluto – isn't a frequent visitor. Located beyond Neptune, its extreme orbit circumnavigates the sun once every 25,000 years, taking it beyond our solar system.
The new object, named 2017 OF201, was discovered by researchers in an astronomical image database while searching for trans-Neptunian objects (TNOs) and possible new planets in the outer solar system.
Sihao Cheng, an astrophysicist at the Institute for Advanced Study's School of Natural Sciences, led the team that discovered the object, which he described as an "extreme 'cousin' of Pluto," in a comment on his personal website.
2017 OF201 is about one-third the size of Pluto, which was reclassified as a dwarf planet in August 2006, and "is likely large enough to qualify as a dwarf planet, and its orbit is extremely wide," Cheng said.
Jupiter: Our solar system's biggest planet used to be twice as large: Study
New tough-to-detect dwarf planet has an extreme orbit
'The object's aphelion – the farthest point on the orbit from the Sun – is more than 1600 times that of the Earth's orbit,' Cheng said in a synopsis of the findings posted May 22 on the Institute for Advanced Study (IAS) website. "Meanwhile, its perihelion – the closest point on its orbit to the Sun – is 44.5 times that of the Earth's orbit, similar to Pluto's orbit."
The researchers identified 2017 OF201 using 19 different astronomical database exposures, captured over seven years. The International Astronomical Union's Minor Planet Center officially announced the new object's discovery on May 21, the IAS said.
2017 OF201's extreme orbit makes it detectable about 1% of the time, the researchers said. Spotting 2017 OF201 beyond the Kuiper Belt, a donut-shaped section of space past the orbit of Neptune filled with icy debris, suggests the region may not be as empty as previously thought.
"The presence of this single object suggests that there could be another hundred or so other objects with similar orbit and size; they are just too far away to be detectable now,' Cheng said in the synopsis. 'Even though advances in telescopes have enabled us to explore distant parts of the universe, there is still a great deal to discover about our own solar system.'
The extreme orbit of 2017 OF201 also suggests the object "must have experienced close encounters with a giant planet, causing it to be ejected to a wide orbit,' said Eritas Yang, a Princeton University graduate student who assisted in the research, in the study synopsis.
More than one galactic event could have created 2017 OF201's orbit, Cheng added. "It's possible that this object was first ejected to the Oort cloud, the most distant region in our solar system, which is home to many comets, and then sent back," he said.
New dwarf planet could dash Planet X hypothesis
The new object could also challenge the hypothesis that there's a "Planet X" or "Planet Nine" beyond Pluto, with gravity affecting dwarf planets and other objects in the Kuiper Belt. That's because 2017 OF201's orbit is "well outside the clustering observed in extreme (TNOs), which has been proposed as dynamical evidence for a distant, undetected planet," the researchers write in a draft version of their submitted research.
"The existence of 2017 OF201 might suggest that Planet 9 or X doesn't exist," said Jiaxuan Li, another Princeton University astrophysical sciences grad student who collaborated on the research, on his personal website.
But research will continue. "I hope Planet 9 still exists, because that'll be more interesting," Cheng told the New Scientist.
Contributing: Doyle Rice and Elizabeth Weise.
Mike Snider is a reporter on USA TODAY's Trending team. You can follow him on Threads, Bluesky, X and email him at mikegsnider & @mikegsnider.bsky.social & @mikesnider & msnider@usatoday.com
What's everyone talking about? Sign up for our trending newsletter to get the latest news of the day
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

James Webb telescope reveals 'Sleeping Beauty' galaxies in the early universe — snoozing where they weren't supposed to exist
James Webb telescope reveals 'Sleeping Beauty' galaxies in the early universe — snoozing where they weren't supposed to exist

Yahoo

time20 hours ago

  • Yahoo

James Webb telescope reveals 'Sleeping Beauty' galaxies in the early universe — snoozing where they weren't supposed to exist

When you buy through links on our articles, Future and its syndication partners may earn a commission. Astronomers have discovered over a dozen "dormant" galaxies that paused their star formation within the first billion years after the Big Bang. The discovery, made with data from the James Webb Space Telescope (JWST), illuminates a fascinating phase in the lives of early galaxies and could provide more clues about how galaxies evolve. There are several reasons why galaxies may stop forming new stars. One is the presence of supermassive black holes at their centers. These behemoths emit intense radiation that heats and depletes cold gas, the most important ingredient for star formation. Additionally, larger neighboring galaxies can strip away this cold gas or heat it, leading to a halt in star formation. As a result, these galaxies may remain dormant indefinitely, or become "quenched." Another reason galaxies become inactive is stellar feedback. That's when the gas in the galaxy gets warmed and expelled due to stellar processes like supernovas, intense stellar winds, or the pressure associated with starlight. The galaxy thus goes through a temporary "quiet" period. "This is usually a temporary phase, which usually lasts about 25 million years," Alba Covelo Paz, a doctoral student at the University of Geneva and the lead author of a new study describing the findings, told Live Science in an email. Over millions of years, the gas that was pushed out falls back in, and the warm gas cools again. Once there is enough cold gas again, the galaxy can start forming new stars. While the dormant phase is commonly observed in nearby galaxies, astronomers have found only four dormant galaxies in the first billion years of the universe. Of those, three had masses below a billion solar masses and one had a mass above 10 billion solar masses. The limited observations and scattered properties of dormant galaxies were not sufficient to get a clear picture of early star formation. Related: 'Previously unimaginable': James Webb telescope breaks its own record again, discovering farthest known galaxy in the universe But using JWST's sensitive spectroscopic data, an international team of astronomers discovered 14 dormant galaxies with a wide range of masses in the early universe, showing that dormant galaxies are not limited to low or very high mass ranges. The findings were uploaded to the preprint database arXiv on June 27 and have not been peer-reviewed yet. Taking a breather Researchers didn't expect to see dormant galaxies in the early universe. Because these galaxies are young, they should be vigorously forming many new stars, astronomers thought. But in a 2024 paper, researchers described the first discovery of a dormant galaxy in the early universe. "The first discovery of a dormant galaxy in the early universe was such a shock because that galaxy had been observed before with Hubble, but we could not know it was dormant until JWST," Paz said. That's because, unlike the Hubble Space Telescope, JWST's NIRSpec instrument can both see light from these galaxies that has been redshifted to near-infrared wavelengths, and also provide spectroscopic details about it. Astronomers were curious to know why early galaxies stopped forming stars and whether this was common among a wide range of stellar masses. One hypothesis was that the galaxies had bursts of star formation and then quiet periods, before starting again. Paz and her team looked for the galaxies that were in between bursts of star formation. They used publicly available galaxy data in the DAWN JWST Archive. They examined the light of about 1,600 galaxies, looking for signs of new stars not forming. They also focused on clear signatures of middle-aged or old stars in the galaxies' light. The team found 14 galaxies, ranging from about 40 million to 30 billion solar masses, that had paused star formation. "We now found 14 sources supporting this burstiness process, and we found that all of them have halted star formation between 10 [million] and 25 million years before we observed them," Paz explained. That means these 14 galaxies were found to follow a stop-and-go fashion of star formation rather than continuously forming stars, and they have been quiet for at least 10 million to 25 million years. This relatively short snooze hints that stellar feedback, such as supernovas or stellar winds, caused them to go quiet and that they may eventually restart their stellar factories, Paz said. However, there is still uncertainty, she added. "We cannot confirm it for sure because we don't know how long they will remain dormant, and if they happen to stay dormant for another 50 million years, this would mean the cause of their quenching is different," Paz explained. RELATED STORIES —Interstellar comet 3I/ATLAS transforms into a giant 'cosmic rainbow' in trippy new telescope image —'Ice cube' clouds discovered at the galaxy's center shouldn't exist — and they hint at a recent black hole explosion —Behold, 'The Beast': Gigantic animal-like plasma plume 13 times wider than Earth hovers over the sun This scenario would suggest that the galaxies are dead. Nevertheless, the current properties of these galaxies support a cycle of fits and starts. Because dormant galaxies are so rare, much about them remains mysterious. However, astronomers hope future observations will help shed light on these snoozing star factories. An upcoming JWST program called "Sleeping Beauties" will be dedicated to discovering dormant galaxies in the early universe, Paz said. This program will allow astronomers to estimate how long a galaxy remains in this quiet phase and help them understand the bursty star formation process. "There are still many unknowns for us, but we are one step closer to unravelling this process," Paz said.

Bizarre "Infinity Galaxy" Could Hold the Secrets of Supermassive Black Holes
Bizarre "Infinity Galaxy" Could Hold the Secrets of Supermassive Black Holes

Yahoo

timea day ago

  • Yahoo

Bizarre "Infinity Galaxy" Could Hold the Secrets of Supermassive Black Holes

Astronomers using data collected by the James Webb Space Telescope have discovered a spectacular cosmic object they're calling the "Infinity Galaxy." The site of an epic head-on collision between two galaxies, it could harbor the secrets to how the heaviest black holes in the universe, the supermassive black holes found at the hearts of galaxies, are born and reach their unbelievable masses — masses extreme enough to organize trillions of stars around them. "Everything is unusual about this galaxy. Not only does it look very strange, but it also has this supermassive black hole that's pulling a lot of material in," Pieter van Dokkum, lead author of a new study published in the Astrophysical Journal Letters, said in a statement about the work. "As an unexpected bonus, it turns out that both galaxy nuclei also have an active supermassive black hole," van Dokkum added. "So, this system has three confirmed active black holes: two very massive ones in both of the galaxy nuclei, and the one in between them that might have formed there." The singularity-studded object was found by searching through public data collected in the COSMOS-Web survey, which is designed to document the evolution of galaxies, with data gathered on 800,000 realms and counting. In an image taken with the Webb, two bright spots represent the nuclei of each of the two colliding galaxies, both surrounded by their own ring of stars. This lends it the shape of an infinity symbol, hence its memorable name. What's most striking, though, is what appears between them, revealed in follow-up observations: an enormous supermassive black hole swimming in a sea of ionized gas. It's estimated to contain a mass equivalent to a million times that of our own Sun — and it's still actively growing. "It likely didn't just arrive there, but instead it formed there. And pretty recently," van Dokkum said. "We think we're witnessing the birth of a supermassive black hole — something that has never been seen before." This could be some of the most compelling evidence yet of black holes forming by directly collapsing into a singularity from a huge, heavy cloud of gas. The origins of supermassive black holes are one of the great mysteries of cosmology. They undeniably exist, forming the heart of the largest galaxies, including our own Milky Way — but how they form and gain such unbelievable heft is still hotly debated; the heaviest black holes may weigh hundreds of billions of solar masses. The most well-known way that black holes are born is through the collapse of a very massive star that explodes in a supernova. This might spawn a black hole with several to a hundred times the mass of the Sun, maybe even a thousand. Then, give one of these stellar-mass black holes hundreds of millions to billions of years to devour matter that falls into it, or merge with other black holes, and it might reach a supermassive stature. Astronomers, however, have observed black holes boasting millions of solar masses while existing just 400 million years after the Big Bang, which simply isn't enough time for one to reach its size by gradually accreting matter. That points to another possibility called the "heavy seed theory," explains van Dokkum, "where a much larger black hole, maybe up to one million times the mass of our Sun, forms directly from the collapse of a large gas cloud." This would've been facilitated by the hot conditions of the early universe, allowing a gas cloud to collapse into one large object instead of forming numerous smaller stars. "It's not clear that this direct-collapse process could work in practice," van Dokkum said. But there's compelling reason to believe that the Infinity Galaxy is home to a black hole born through this exact process. The best clue is the central supermassive black hole's velocity, which matches up with the surrounding gas, strongly suggesting it formed right where we're seeing it. If it formed elsewhere in the cosmos and barged into the mix, the velocity would be significantly higher. What astronomers think happened, then, is that when the constituent two galaxies collided, the gas contained in them compressed to form a "dense knot," van Dokkum said, "which then collapsed into a black hole." "We can't say definitively that we have found a direct collapse black hole," van Dokkum concluded. "But we can say that these new data strengthen the case that we're seeing a newborn black hole, while eliminating some of the competing explanations." More on black holes: Scientists Detect Sign of Something Impossible Out in Deep Space Solve the daily Crossword

Complete Guide To ‘Ammonite,' The Solar System's Latest Member
Complete Guide To ‘Ammonite,' The Solar System's Latest Member

Forbes

time2 days ago

  • Forbes

Complete Guide To ‘Ammonite,' The Solar System's Latest Member

Sedna orbiting near of Neptune planet. 3d render The solar system suddenly has a new member. A new object discovered in the solar system beyond Neptune and Pluto has astronomers rethinking the history of the solar system. Called 2023 KQ14 and nicknamed 'Ammonite,' the discovery of this unique so-called trans-Neptunian object is both unexpected and could reshape what we know about the solar system's past. Here's everything you need to know about Ammonite, the solar system's newly found object. Is Ammonite A Planet Or A Dwarf Planet? Ammonite is not classed as a planet. It's not even called a dwarf planet, like Pluto (and Ceres, Haumea, Makemake and Eris). Ammonite is classed as a sednoid — an object similar to Sedna, a dwarf planet candidate in the outer solar system, which was found in 2003. Like Sedna, Ammonite orbits beyond Neptune and has a highly eccentric orbit. Ammonite is only the fourth sednoid ever discovered (after Sedna, 2012 VP113 — nicknamed Biden — and Leleākūhonua). How Big Is Ammonite? Based solely on how much sunlight it reflects, Ammonite is thought to be between 137 and 236 miles (220 and 380 kilometers) in diameter, according to the paper announcing its discovery published this week in Nature Astronomy. That's large, but significantly smaller than Pluto's diameter of about 1,477 miles (2,377 kilometers) and Earth's diameter of 7,926 miles (about 12,756 kilometers). How Far Away Is Ammonite? The solar system is measured in Earth-sun distances, one of which is called an astronomical unit (au). When it was found, Ammonite was 71 au from the sun. That's about twice as far as Neptune (30 au) and Pluto (40 au). However, Ammonite's orbital path is highly elliptical, getting as far from the sun as 432 au. It takes about 4,000 Earth-years to complete one orbit of the sun. 'Ammonite was found in a region far away where Neptune's gravity has little influence,' said Dr. Fumi Yoshida of the University of Occupational and Environmental Health and the Chiba Institute of Technology, who leads the FOSSIL project that uncovered Ammonite. That implies that 'something extraordinary occurred during the ancient era when Ammonite formed,' said Yoshida. How Does Ammonite Affect The 'Planet Nine' Thesis? The discovery appears to make the existence of a ninth planet less likely. There is an unusual clustering of six minor bodies in the outer solar system (including the sednoids). All appear to have hugely elongated and elliptical orbits, suggesting that they may have been 'herded' by the gravitational influence of a planet. However, Ammonite's orbit is oriented in the opposite direction to the three other sednoids, breaking their orbital clustering — and, therefore, challenging the 'Planet Nine' theory. 'The fact that Ammonite's current orbit does not align with those of the other three sednoids lowers the likelihood of the Planet Nine hypothesis,' said Dr. Yukun Huang at the Center for Computational Astrophysics (CfCA) of NAOJ, who conducted simulations of Ammonite's orbit. 'It is possible that a planet once existed in the solar system but was later ejected, causing the unusual orbits we see today.' The orbit of Ammonite (red line) and the orbits of the other three sednoids (white lines). Ammonite ... More was discovered close to its perihelion, at a distance of 71 astronomical units (71 times the average distance between the Sun and Earth). The yellow point shows its position as of July 2025. Could 'Planet Nine' Still Exist After Ammonite's Discovery? The so-called 'Planet Nine' could still exist, but much farther out in the solar system. It could also be a 'ghost planet,' ejected long ago, with only its past gravitational influence remaining. The orbits of Ammonite and the other sednoids could also be explained by the gravitational influence of a star passing close to the solar system billions of years ago. How Was Ammonite Found? Ammonite was first observed using the Subaru Telescope's wide-field prime-focus camera, Hyper Suprime-Cam (HSC), in March 2023 as part of the survey project FOSSIL (Formation of the Outer Solar System: An Icy Legacy). That also explains why it's named after a fossil of a cephalopod. It was observed using Suburu again in May and August 2023. The Canada-France-Hawaii Telescope's MegaCam was used in July 2024 to trace its orbit more precisely. However, its orbit was calculated by finding it in archive images going back 19 years, including images from 2014 and 2021 from the DECam instrument in Chile and in 2005 images taken by Kitt Peak National Observatory. This animation shows the observations of comet 3I/ATLAS when it was discovered on July 1, 2025. The ... More NASA-funded ATLAS survey telescope in Chile first reported that the comet originated from interstellar space. Why Is Ammonite Called A 'Fossil' Of The Solar System? Ammonite's status as a 'fossil' of the early solar system comes from the finding that it's at least 4.5 billion years old — almost as old as the solar system itself. Numerical simulations using NAOJ's CfCA PC Cluster supercomputer indicate Ammonite's orbit has remained stable for that time. It also revealed that around 4.2 billion years ago, the orbits of all the sednoids were very similar. Ammonite is part of the fossil record of the orbital configuration of the early solar system. That helps astronomers understand what the solar system looked like when it first formed. Why The Discovery Of Ammonite Is So Significant The discovery of Ammonite goes far beyond merely adding one more distant object to the solar system's population. 'Ammonite's orbit tells us that something sculpted the outer solar system very early on. Whether it was a passing star or a hidden planet, this discovery brings us closer to the truth,' said Dr. Shiang-Yu Wang, the study's corresponding author and a Research Fellow in ASIAA. 'Spacecraft have only explored limited regions of the Solar System [and] most of the vast solar system remains unexplored,' said Yoshida. 'Wide-field observations with the Subaru Telescope are steadily pushing back the frontier. ' Whether 2023 KQ14 is officially named Ammonite remains to be seen, with the International Astronomical Union set to assign a name at a later date. Wishing you clear skies and wide eyes.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store