Sunshine abounds as the summer solstice arrives
Peak sunshine has arrived in the Northern Hemisphere — the summer solstice.
Friday is the longest day of the year north of the equator, where the solstice marks the start of astronomical summer. It's the opposite in the Southern Hemisphere, where it is the shortest day of the year and winter will start.
The word 'solstice' comes from the Latin words 'sol' for sun and 'stitium' which can mean 'pause' or 'stop.' The solstice is the end of the sun's annual march higher in the sky, when it makes its longest, highest arc. The bad news for sun lovers: It then starts retreating and days will get a little shorter every day until late December.
People have marked solstices for eons with celebrations and monuments, including Stonehenge, which was designed to align with the sun's paths at the solstices. But what is happening in the heavens? Here's what to know about the Earth's orbit.
Solstices are when days and nights are at their most extreme
As the Earth travels around the sun, it does so at an angle relative to the sun. For most of the year, the Earth's axis is tilted either toward or away from the sun. That means the sun's warmth and light fall unequally on the northern and southern halves of the planet.
The solstices mark the times during the year when this tilt is at its most extreme, and days and nights are at their most unequal.
During the Northern Hemisphere's summer solstice, the upper half of the earth is tilted toward the sun, creating the longest day and shortest night of the year. This solstice falls between June 20 and 22.
Meanwhile, at the winter solstice, the Northern Hemisphere is leaning away from the sun — leading to the shortest day and longest night of the year. The winter solstice falls between December 20 and 23.
The equinox is when there is an equal amount of day and night
During the equinox, the Earth's axis and its orbit line up so that both hemispheres get an equal amount of sunlight.
The word equinox comes from two Latin words meaning equal and night. That's because on the equinox, day and night last almost the same amount of time — though one may get a few extra minutes, depending on where you are on the planet.
The Northern Hemisphere's spring — or vernal — equinox can land between March 19 and 21, depending on the year. Its fall – or autumnal — equinox can land between Sept. 21 and 24.
On the equator, the sun will be directly overhead at noon. Equinoxes are the only time when both the north and south poles are lit by sunshine at the same time.
What's the difference between meteorological and astronomical seasons?
These are just two different ways to carve up the year.
While astronomical seasons depend on how the Earth moves around the sun, meteorological seasons are defined by the weather. They break down the year into three-month seasons based on annual temperature cycles. By that calendar, spring starts on March 1, summer on June 1, fall on Sept. 1 and winter on Dec. 1.
___
The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Department of Science Education and the Robert Wood Johnson Foundation. The AP is solely responsible for all content.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Business Wire
12 hours ago
- Business Wire
Rocket Lab Completes Record Launch Turnaround From Launch Complex 1, Successfully Deploys 68 th Electron Mission
MAHIA, New Zealand--(BUSINESS WIRE)--Rocket Lab Corporation (Nasdaq: RKLB) ('Rocket Lab' or 'the Company'), a global leader in launch services and space systems, today successfully launched its 68th Electron rocket to deploy a single satellite to space for a confidential commercial customer. The mission was the second of two launches from the same launch site in less than 48 hours, a new launch record for the Company as it continues to deliver dedicated, repeatable and reliable access to space for satellite operators. The 'Symphony In The Stars' mission lifted-off from Rocket Lab Launch Complex 1 in Mahia, New Zealand on June 28 th (7:08 p.m./07:08 UTC) to deploy a single spacecraft to a 650km circular Earth orbit. The mission was the first of two dedicated launches for the new customer on Electron booked less than four months ago, with a second mission scheduled before the end of 2025. Rocket Lab has now completed four launches in June for commercial satellite constellation operators, underscoring Electron's consistent performance and rapid deployment capabilities as the world's leading small launcher: the 'Full Stream Ahead' mission on June 3 rd; 'The Mountain God Guards' mission on June 11 th; 'Get The Hawk Outta Here' launched on June 26 th UTC, and today's 'Symphony In The Stars' mission. Rocket Lab Founder and CEO, Sir Peter Beck, says: 'Electron has demonstrated once again that it is the gold standard for responsive and reliable space access for small satellites. The future of space is built on proven performance, and Electron continues to deliver against a stacked launch manifest this year. Congratulations to the team on achieving its fastest launch turnaround yet between two missions from Launch Complex 1. This launch was also a quick-turn mission to meet our customer's mission requirements, and we're looking forward to doing it again later this year.' 'Symphony In The Stars' was Rocket Lab's tenth Electron mission of 2025 and its 68th launch overall. With 100% mission success so far this year, Electron continues to deliver reliable deployment amid an increasing launch cadence and rapid contract-to-launch timelines. Launch images: About Rocket Lab Founded in 2006, Rocket Lab is an end-to-end space company with an established track record of mission success. We deliver reliable launch services, satellite manufacture, spacecraft components, and on-orbit management solutions that make it faster, easier, and more affordable to access space. Headquartered in Long Beach, California, Rocket Lab designs and manufactures the Electron small orbital launch vehicle, a family of spacecraft platforms, and the Company is developing the large Neutron launch vehicle for constellation deployment. Since its first orbital launch in January 2018, Rocket Lab's Electron launch vehicle has become the second most frequently launched U.S. rocket annually and has delivered over 200 satellites to orbit for private and public sector organizations, enabling operations in national security, scientific research, space debris mitigation, Earth observation, climate monitoring, and communications. Rocket Lab's spacecraft platforms have been selected to support NASA missions to the Moon and Mars, as well as the first private commercial mission to Venus. Rocket Lab has three launch pads at two launch sites, including two launch pads at a private orbital launch site located in New Zealand and a third launch pad in Virginia. Forward Looking Statements This press release contains forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. We intend such forward-looking statements to be covered by the safe harbor provisions for forward looking statements contained in Section 27A of the Securities Act of 1933, as amended (the 'Securities Act') and Section 21E of the Securities Exchange Act of 1934, as amended (the 'Exchange Act'). All statements contained in this press release other than statements of historical fact, including, without limitation, statements regarding our launch and space systems operations, launch schedule and window, safe and repeatable access to space, Neutron development, operational expansion and business strategy are forward-looking statements. The words 'believe,' 'may,' 'will,' 'estimate,' 'potential,' 'continue,' 'anticipate,' 'intend,' 'expect,' 'strategy,' 'future,' 'could,' 'would,' 'project,' 'plan,' 'target,' and similar expressions are intended to identify forward-looking statements, though not all forward-looking statements use these words or expressions. These statements are neither promises nor guarantees, but involve known and unknown risks, uncertainties and other important factors that may cause our actual results, performance or achievements to be materially different from any future results, performance or achievements expressed or implied by the forward-looking statements, including but not limited to the factors, risks and uncertainties included in our Annual Report on Form 10-K for the fiscal year ended December 31, 2024, as such factors may be updated from time to time in our other filings with the Securities and Exchange Commission (the 'SEC'), accessible on the SEC's website at and the Investor Relations section of our website at which could cause our actual results to differ materially from those indicated by the forward-looking statements made in this press release. Any such forward-looking statements represent management's estimates as of the date of this press release. While we may elect to update such forward-looking statements at some point in the future, we disclaim any obligation to do so, even if subsequent events cause our views to change.
Yahoo
19 hours ago
- Yahoo
Hello, neighbor! See the Andromeda galaxy like never before in stunning new image from NASA's Chandra telescope (video)
When you buy through links on our articles, Future and its syndication partners may earn a commission. The galaxy next door to the Milky Way, Andromeda, has never looked as stunning as it does in a new image from NASA's Chandra X-ray space telescope. The image of the galaxy, also known as Messier 31 (M31), was created with assistance from a range of other space telescopes and ground-based instruments including the European Space Agency (ESA) XMM-Newton mission, NASA's retired space telescopes GALEX and the Spitzer Space Telescope as well as the Infrared Astronomy Satellite, COBE, Planck, and Herschel, in addition to radio data from the Westerbork Synthesis Radio Telescope. All these instruments observed Andromeda in different wavelengths of light across the electromagnetic spectrum, with astronomers bringing this data together to create a stunning and intricate image. The image is a fitting tribute to astronomer Vera C. Rubin, who was responsible for the discovery of dark matter thanks to her observations of Andromeda. As the closest large galaxy to the Milky Way, at just around 2.5 million light-years away, Andromeda has been vital in allowing astronomers to study aspects of galaxies that aren't accessible from our own galaxy. For example, from inside the Milky Way, we can't see our galaxy's spiral arms, but we can see the spiral arms of Andromeda. Every wavelength of light that was brought together to create this incredible new image of Andromeda tells astronomers something different and unique about the galaxy next door. For example, the X-ray data provided by Chandra has revealed the high-energy radiation released from around Andromeda's central supermassive black hole, known as M31*. M31* is considerably larger than the supermassive black hole at the heart of the Milky Way, known as Sagittarius A* (Sgr A*). While our home supermassive black hole has a mass 4.3 million times that of the sun, M31* dwarfs it with a mass 100 million times that of the sun. M31* is also notable for its occasional flares, one of which was observed in X-rays back in 2013, while Sgr A* is a much "quieter" black hole. Andromeda was chosen as a tribute to Rubin because this neighboring galaxy played a crucial role in the astronomer's discovery of a missing element of the universe. An element that we now call dark matter. In the 1960s, Rubin and collaborators precisely measured the rotation of Andromeda. They found that the speed at which this galaxy's spiral arms spun indicated that the galaxy was surrounded by a vast halo of an unknown and invisible form of matter. The mass of this matter provided the gravitational influence that was preventing Andromeda from flying apart due to its rotational speed. The gravity of its visible matter wouldn't have been sufficient to hold this galaxy then, astronomers have discovered that all large galaxies seem to be surrounded by similar haloes of what is now known as dark matter. This has led to the discovery that the matter which comprises all the things we see around us — stars, planets, moons, our bodies, next door's cat — accounts for just 15% of the "stuff" in the cosmos, with dark matter accounting for the other 85%. The finding has also prompted the search for particles beyond the standard model of particle physics that could compose dark matter. Thus, there's no doubt that Rubin's work delivered a watershed moment in astronomy, and one of the most important breakthroughs in modern science, fundamentally changing our concept of the universe. Related Stories: — How did Andromeda's dwarf galaxies form? Hubble Telescope finds more questions than answers — The Milky Way may not collide with neighboring galaxy Andromeda after all: 'From near-certainty to a coin flip' — Gorgeous deep space photo captures the Andromeda Galaxy surrounded by glowing gas June 2025 has been a brilliant month of recognition of Rubin's immense impact on astronomy and her lasting legacy. In addition to this tribute image, the Vera C. Rubin Observatory released its first images of the cosmos as it gears up to conduct a 10-year observing program of the southern sky called the Legacy Survey of Space and Time (LSST). Additionally, in recognition of Rubin's monumental contributions to our understanding of the universe, the United States Mint recently released a quarter featuring Rubin as part of its American Women Quarters Program. She is the first astronomer to be honored in the series.
Yahoo
19 hours ago
- Yahoo
Scientists discover rare planet at the edge of the Milky Way using space-time phenomenon predicted by Einstein
When you buy through links on our articles, Future and its syndication partners may earn a commission. Astronomers have used a space-time phenomenon first predicted by Albert Einstein to discover a rare planet hiding at the edge of our galaxy. The exoplanet, dubbed AT2021uey b, is a Jupiter-size gas giant located roughly 3,200 light-years from Earth. Orbiting a small, cool M dwarf star once every 4,170 days, the planet's location is remarkable — it is only the third planet in the entire history of space observation to be discovered so far away from our galaxy's dense center. Yet perhaps more exceptional than the planet's location is the method used to discover it. The effect, known as microlensing, occurs when the light of a host star is magnified by the warping of space-time due to a planet's gravity. The researchers published their findings May 7 in the journal Astronomy & Astrophysics. "This kind of work requires a lot of expertise, patience, and, frankly, a bit of luck," study co-author Marius Maskoliūnas, an astronomer at Vilnius University in Lithuania, said in a statement. "You have to wait for a long time for the source star and the lensing object to align and then check an enormous amount of data. Ninety percent of observed stars pulsate for various other reasons, and only a minority of cases show the microlensing effect." Nearly 6,000 alien worlds beyond our solar system have been discovered since the first exoplanet was detected in 1992. The two most common detection methods, called transmit photometry and radial velocity, detect planets through the dimming of host stars as they pass in front of them, or from the wobble that the planets' gravitational tugs impart upon them. A rarer method, known as microlensing, is derived from Einstein's theory of general relativity and is produced by massive objects as they warp the fabric of the universe, called space-time. Gravity, Einstein discovered, isn't produced by an unseen force but by space-time curving and distorting in the presence of matter and energy. Related: James Webb telescope discovers its first planet — a Saturn-size 'shepherd' still glowing red hot from its formation This curved space, in turn, determines how energy and matter move through it. Even though light travels in a straight line, light traveling through a curved region of space-time also travels in a curve. This means that when a planet passes in front of its host star, its gravity acts as a lens — magnifying the star's light and causing its brightness to spike. "What fascinates me about this method is that it can detect those invisible bodies," Maskoliūnas said, essentially by measuring the bodies' shadows. "Imagine a bird flying past you. You don't see the bird itself and don't know what color it is — only its shadow. But from it, you can, with some level of probability, determine whether it was a sparrow or a swan and at what distance from us. It's an incredibly intriguing process." RELATED STORIES —James Webb telescope zooms in on bizarre 'Einstein ring' caused by bending of the universe —James Webb telescope uncovers 1st-ever 'Einstein zig-zag' hiding in plain sight — and it could help save cosmology —Stunning 'Einstein engagement ring' from the early universe is one of the oldest ever discovered AT2021uey b's cosmic shadow was first spotted in 2021 in data taken by the European Space Agency's Gaia telescope, revealing its presence by a momentary spike in the brightness of its host star. The astronomers then took detailed follow-up observations using Vilnius's Molėtai Astronomical Observatory, from which they calculated its source as a planet 1.3 times the mass of Jupiter. Its host star burns at about half the temperature of our own, and the gas giant sits four times farther than Earth's distance from the sun. According to the researchers, the planet's discovery so far from the Milky Way's central bulge, in a region that is comparatively sparse in heavier elements needed to form planets, offers a fresh hint of the unlikely places where planets can be found. "When the first planet around a sun-like star was discovered, there was a great surprise that this Jupiter-type planet was so close to its star," Edita Stonkutė, another Vilnius University astronomer and leader of the microlensing project that found the planet, said in the statement. "As data accumulated, we learned that many types of planetary systems are completely unlike ours — the solar system. We've had to rethink planetary formation models more than once."