
Is Earth In A Giant Cosmic Void? Why New Research Could Change Everything
Presented at the Royal Astronomical Society's National Astronomy Meeting, new research led by Dr Indranil Banik from the University of Portsmouth proposes that this "void", also known as an underdensity, could help solve one of astrophysics' biggest puzzles: the Hubble Tension, a long-standing discrepancy in measurements of the universe's rate of expansion.
'We showed that a void model is about one hundred million times more likely than a void-free model,' Dr Banik said, explaining that their data was based on 20 years of measurements of baryon acoustic oscillations – faint, frozen ripples in matter left over from the Big Bang, often described as the "sound" of the early universe.
If true, this theory means we're sitting inside a cosmic bubble roughly a billion light-years wide and about 20% less dense than the average universe. This sparsity of matter could distort our view of how quickly galaxies are racing away, essentially tricking us into thinking the universe is expanding faster than it actually is.
The idea of a local void is not new; scientists have debated it for decades, but it has remained controversial because it challenges the principle that the universe should be evenly spread out at large scales. However, Dr Banik's model, which incorporates redshift measurements and the latest Planck satellite data, offers compelling evidence that could shift mainstream scientific opinion.
If confirmed, the implications are profound: not only would it reshape our understanding of cosmology, but it could also suggest that the "heat death" of the universe, when all energy is evenly spread and nothing happens anymore, might be much further in the future than previously believed.
The research team plans to compare their void model with other measurements to further test its validity.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Indian Express
an hour ago
- Indian Express
Matter's elusive dark twin: Most expensive substance in the universe
In 1930, theoretical physicist Paul Dirac was trying to reconcile quantum mechanics with Einstein's theory of relativity when his equations hinted at something strange: the existence of a 'mirror' particle identical to the electron, but with opposite charge. Its implications made him uneasy — that every particle has an antiparticle, and that perhaps the whole of nature is constructed in this way. Dirac's calculation wasn't to be a mere mathematical quirk. Two years later, American particle physicist Carl Anderson found the positron, the electron's antimatter twin, in cosmic ray experiments. It was a moment of rare scientific poetry: a particle predicted by pure mathematics, then seen in nature. Antimatter sounds like something from science fiction. And indeed, it has captured the imagination of writers from Star Trek (where it powers warp drives) to Angels and Demons (where it threatens to obliterate Vatican City). But antimatter is very real, though vanishingly rare in our universe. Whenever a particle meets its antiparticle, they annihilate in a flash of energy — converting all their mass, as per Einstein's , into pure light. That property makes antimatter the most energy-dense substance imaginable. A single gram could, in theory, produce as much energy as a nuclear bomb. But if it's so powerful, why don't we use it? And why don't we see it everywhere? Here lies one of the deepest mysteries in cosmology. The Big Bang, as we understand it, should have created equal amounts of matter and antimatter. But for reasons not yet fully known, the early universe tipped the scales ever so slightly toward matter — by just one part in a billion. That tiny excess is what makes up everything we see: stars, galaxies, people, planets. The rest annihilated with its antimatter counterpart in the early universe. Physicists are still trying to understand why the universe has this imbalance. One possibility is that antimatter behaves slightly differently than matter — a tiny asymmetry in how particles decay, known as CP violation. Experiments at CERN and Fermilab are probing these effects, but so far, no definitive explanation has emerged. The reality of antimatter: not just theory Despite its elusiveness, antimatter isn't merely theoretical. We make it — routinely. In fact, hospitals around the world use positrons (antimatter electrons) every day in PET scans. The 'P' in PET stands for 'positron,' and the scan works by injecting a radioactive tracer that emits positrons. When these encounter electrons in the body, they annihilate and emit gamma rays, which are detected to create precise images of tissues. Physicists at CERN's Antimatter Factory even trap anti-hydrogen atoms, composed of an antiproton and a positron, in magnetic fields for a few milliseconds at a time, to study their properties. The dream is to answer a simple but profound question: does antimatter fall down like regular matter, or does it somehow respond differently to gravity? Early experiments suggest it falls the same way, but the precision isn't yet conclusive. Energy source or weapon? Harnessing antimatter sounds like a sci-fi superpower, and indeed, the energy from matter-antimatter annihilation could, in theory, power spacecraft far more efficiently than any rocket we've built. But there's a catch: antimatter is mind-bogglingly expensive. Producing a single gram would cost about $60 trillion using today's particle accelerators. Worse, storing it safely is a nightmare. Let it touch anything, and boom, it annihilates. That hasn't stopped the speculation. NASA has funded studies on antimatter propulsion, suggesting it could one day shorten interstellar travel. But for now, it remains out of reach, a gleaming prize at the edge of possibility. Antimatter in space Cosmic rays from deep space occasionally strike Earth's upper atmosphere, producing short-lived showers of antimatter particles. The International Space Station even carries an instrument called the Alpha Magnetic Spectrometer, scanning for signs of antimatter nuclei that could hint at entire regions of the universe made of antimatter — a speculative idea, but one not yet ruled out. Neutron stars and black hole jets may also generate antimatter in tiny amounts, adding to the cosmic fireworks. But overall, the universe appears matter-dominated. Why nature chose this option, why there's something instead of nothing, remains among the deepest riddles in physics. Final Reflections In Star Trek, antimatter is a tame servant of human ambition. In reality, it's a fleeting, elusive shadow of the particles we know. Dirac's equations suggested a universe with perfect symmetry, but nature, like a mischievous artist, left a flaw in the mirror. The story of antimatter reminds us that physics isn't just about numbers or formulas. It's about imagination, daring, and a relentless curiosity about the hidden sides of reality. Somewhere in the collision of matter and anti-matter lies a spark — of annihilation, yes, but also of wonder. Shravan Hanasoge is an astrophysicist at the Tata Institute of Fundamental Research.
&w=3840&q=100)

First Post
a day ago
- First Post
Have scientists decoded why the universe exists? Cern study points to matter-antimatter asymmetry
The finding offers vital clues to the long-standing mystery of why the universe is composed predominantly of matter, rather than being annihilated by an equal amount of antimatter read more A new study has shed light on one of humankind's fundamental queries: Why does the universe exist? Image courtesy: Nasa A new study at CERN has provided critical insights into one of the most fundamental questions in physics: why does anything exist at all? Researchers working on the Large Hadron Collider beauty (LHCb) experiment have observed a rare form of symmetry violation in the decays of beauty baryons– particles containing a bottom quark. The finding offers vital clues to the long-standing mystery of why the universe is composed predominantly of matter, rather than being annihilated by an equal amount of antimatter. STORY CONTINUES BELOW THIS AD The study, published in Nature, reports the observation of charge–parity (CP) violation in a baryonic decay process, marking a significant development in the quest to understand the imbalance between matter and antimatter in the early universe. What did the scientists observe? The experiment focused on a specific decay of the beauty baryon, into a proton, a kaon (K−), and two pions (π+ and π−). This decay can occur via two different quark-level pathways: one involving a bottom-to-up (b → u) transition and another involving a bottom-to-strange (b → s) transition. Crucially, the researchers found that these two processes do not behave symmetrically when matter is swapped for antimatter. This violation of CP symmetry is a direct indication that the laws of physics are not entirely the same for matter and antimatter– a foundational requirement for explaining why the universe didn't simply self-destruct in a flash of mutual annihilation shortly after the Big Bang. Why is CP violation so important? CP violation had previously been observed in the decays of mesons– particles made of a quark and an antiquark. However, baryons (made of three quarks) are less explored in this context. The new findings from the LHCb collaboration represent the first clear evidence of CP violation in baryon decays, expanding the frontier of known symmetry-breaking phenomena. This asymmetry is a necessary component in explaining the observed dominance of matter in the universe. Without it, the Standard Model predicts that equal amounts of matter and antimatter would have been produced in the early universe– leading to their mutual destruction.


Deccan Herald
5 days ago
- Deccan Herald
Why Germany is a perfect fit for the scientifically inclined
The Max-Planck-Society, which today boasts 84 institutes and research facilities, was founded in 1911. It ranks among the world's top institutions with the highest number of Nobel Prizes in natural sciences. It also supports its researchers in bringing their innovation to the market.