logo
Galaxies battle in ‘cosmic joust' witnessed by astronomers for the first time

Galaxies battle in ‘cosmic joust' witnessed by astronomers for the first time

CTV News24-05-2025
An image taken by the Atacama Large Millimeter/submillimeter Array (ALMA) shows the molecular gas content of the two galaxies involved in the cosmic joust. (ALMA (ESO/NAOJ/NRAO)/S. Balashev and P. Noterdaeme et al. via CNN Newsource)
Astronomers have for the first time spotted two galaxies in the throes of a deep-space 'duel.'
Using combined observations from ground-based telescopes over nearly four years, the researchers saw the distant galactic neighbors charging toward each other at more than 1.1 million miles per hour (1.8 million kilometres per hour). One repeatedly wielded its intense beams of radiation at the other, dispersing gas clouds and weakening its opponent's ability to form new stars.
'That's why we call it a 'cosmic joust,'' said Pasquier Noterdaeme, a researcher for the Paris Institute of Astrophysics and the French-Chilean Laboratory for Astronomy in Chile who was part of the team that made the discovery.
What Noterdaeme and his colleagues spied was a distant snapshot of the two galaxies in the process of merging into one large galaxy 11 billion light-years away. The findings, described in a study published Wednesday in the journal Nature, provide a rare look into earlier times in the universe, when star formation and galaxy mergers were more common.
Zooming in
Working with the European Southern Observatory's Very Large Telescope (VLT) and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, the researchers found that the 'attacking' galaxy's piercing radiation comes from within its bright core, a quasar, powered by a supermassive black hole.
The intense gravitational influence of a black hole draws matter toward it in such an energetic way that dust and gas heat up to millions of degrees and become luminous, according to NASA. These luminous materials spiral around the black hole before entering, forming what's called an 'accretion disk,' and jets of energetic matter beam out away from the center.
Each blast of the quasar's ultraviolet waves are about a thousand times stronger than the radiation of our Milky Way, causing hydrogen molecules from some of the 'victim' galaxy's star-forming nurseries to split and disperse, according to the study.
Stars form when large clumps of gas and dust reach a critical mass and collapse under their own gravity. However, researchers observed that after being dispersed by the radiation, the clouds were not dense or large enough to create new stars.
As additional material from the victim galaxy is drawn within reach of the supermassive black hole, it fuels the quasar with more energy. Quasars have been known to essentially 'switch off' from time to time, said study coauthor Sergei Balashev, a researcher at the Ioffe Institute in St. Petersburg, Russia, which could give molecular clouds the opportunity to reform.
'It's really the first time that we can see the radiative effect of a quasar on the molecular gas of a nearby galaxy,' Balashev said. Until now, this effect had only been theorized but not confirmed through direct observation.
Scientists initially wanted to observe this particular quasar more closely because of its unique features among thousands of low-resolution spectra, which are like fingerprints for distant celestial objects, offering clues about composition, temperature and activity within them.
'It's really (like) finding a needle in a haystack,' Balashev said. However, the light from quasars is so powerful that it often outshines their own host galaxies, making it difficult to observe other galaxies close by, according to Noterdaeme, the study's co-lead author.
Highly dynamic, luminous quasars are rare, according to NASA. Only about 1,000 of these objects are known to exist in the early days of the universe, Anniek Gloudemans, a postdoctoral research fellow at the National Science Foundation's NOIRLab, previously told CNN via email.
'At first, we just knew there was some molecular gas between the (attacking galaxy's) quasar and us. It's only after, when we started to look with bigger telescopes, that we detected there were actually two galaxies,' Noterdaeme said.
While the dueling pair appears to be overlapping in the low-resolution spectra, the high-resolution imaging capabilities of ALMA revealed the galaxies are actually separated by thousands of light-years. Using the Very Large Telescope, the researchers were able to study the density and distance of the gas affected by the quasar's radiation.
Since the light from these objects came from billions of light-years away in the early universe, it's possible the two galaxies have already merged by now, but there is no way to be sure, Balashev said.
A blast from the past
Scientists believe quasars and galaxy mergers used to be far more common earlier in the universe's lifetime, said Dong-Woo Kim, an astrophysicist with the Harvard and Smithsonian Center for Astrophysics who was not involved in the research.
Galaxies merge when they are pulled toward each other by gravity, and the universe used to be more densely packed together. Over time, the universe has expanded, and more galaxies have combined into larger ones, Kim said.
Noterdaeme said that 10 billion years ago was an interesting time in the universe, adding that astronomers call this period when stars formed at a rapid rate the 'noon of the universe.'
Though less frequent, galaxy mergers are still happening all the time, Kim said. Even our own Milky Way is expected to merge with the Andromeda galaxy in a few billion years, but the study team isn't certain yet whether the 'cosmic joust' phenomenon is a common feature when two galaxies collide and form a larger one.
'It's an exciting field to study,' Kim said. 'Research like this can teach us more about the birth of new galaxies and observe how they evolve over time.'
Kameryn Griesser, CNN
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Birth of a solar system: Astronomers observe early planet formation for 1st time
Birth of a solar system: Astronomers observe early planet formation for 1st time

CBC

time2 days ago

  • CBC

Birth of a solar system: Astronomers observe early planet formation for 1st time

Social Sharing Astronomers have discovered the earliest seeds of rocky planets forming in the gas around a baby sun-like star, providing a precious peek into the dawn of our own solar system. It's an unprecedented snapshot of "time zero," scientists reported Wednesday, when new worlds begin to gel. "We've captured a direct glimpse of the hot region where rocky planets like Earth are born around young protostars," said Leiden Observatory's Melissa McClure from the Netherlands, who led the international research team. "For the first time, we can conclusively say that the first steps of planet formation are happening right now." The observations offer a unique glimpse into the inner workings of an emerging planetary system, said the University of Chicago's Fred Ciesla, who was not involved in the study appearing in the journal Nature. "This is one of the things we've been waiting for. Astronomers have been thinking about how planetary systems form for a long period of time," Ciesla said. "There's a rich opportunity here." NASA's Webb Space Telescope and the European Southern Observatory (ESO) in Chile teamed up to unveil these early nuggets of planetary formation around the young star known as HOPS-315. It's a yellow dwarf in the making like the sun, yet much younger at 100,000 to 200,000 years old and some 1,370 light-years away. A single light-year is nine trillion kilometres. In a cosmic first, McClure and her team stared deep into the gas disk around the baby star and detected solid specks condensing — signs of early planet formation. A gap in the outer part of the disk allowed them to gaze inside, thanks to the way the star tilts toward Earth. They detected silicon monoxide gas as well as crystalline silicate minerals, the ingredients for what's believed to be the first solid materials to form in our solar system more than 4.5 billion years ago. The action is unfolding in a location comparable to the asteroid belt between Mars and Jupiter containing the leftover building blocks of our solar system's planets. The condensing of hot minerals was never detected before around other young stars, "so we didn't know if it was a universal feature of planet formation or a weird feature of our solar system," McClure said in an email. "Our study shows that it could be a common process during the earliest stage of planet formation." WATCH | Some days feeling shorter? Here's why: Why Earth will spin slightly faster on 3 days this summer 7 days ago While other research has looked at younger gas disks and, more commonly, mature disks with potential planet wannabes, there's been no specific evidence for the start of planet formation until now, McClure said. In a stunning picture taken by the ESO's Alma telescope network, the emerging planetary system resembles a lightning bug glowing against the black void. It's impossible to know how many planets might form around HOPS-315. With a gas disk as massive as the sun's might have been, it could also wind up with eight planets a million or more years from now, according to McClure. Purdue University's Merel van 't Hoff, a co-author, is eager to find more budding planetary systems. By casting a wider net, astronomers can look for similarities and determine which processes might be crucial to forming Earth-like worlds.

Astronomers capture the birth of planets around a baby sun outside our solar system
Astronomers capture the birth of planets around a baby sun outside our solar system

CTV News

time2 days ago

  • CTV News

Astronomers capture the birth of planets around a baby sun outside our solar system

This image provided by the European Southern Observatory on Tuesday, July 15, 2025, shows jets of silicon monoxide blowing away from the baby star HOPS-315. (ALMA(ESO/NAOJ/NRAO)/M. McClure et al. via AP) CAPE CANAVERAL, Fla. — Astronomers have discovered the earliest seeds of rocky planets forming in the gas around a baby sun-like star, providing a precious peek into the dawn of our own solar system. It's an unprecedented snapshot of 'time zero,' scientists reported Wednesday, when new worlds begin to gel. 'We've captured a direct glimpse of the hot region where rocky planets like Earth are born around young protostars,' said Leiden Observatory's Melissa McClure from the Netherlands, who led the international research team. 'For the first time, we can conclusively say that the first steps of planet formation are happening right now.' The observations offer a unique glimpse into the inner workings of an emerging planetary system, said the University of Chicago's Fred Ciesla, who was not involved in the study appearing in the journal Nature. 'This is one of the things we've been waiting for. Astronomers have been thinking about how planetary systems form for a long period of time,' Ciesla said. 'There's a rich opportunity here.' NASA's Webb Space Telescope and the European Southern Observatory in Chile teamed up to unveil these early nuggets of planetary formation around the young star known as HOPS-315. It's a yellow dwarf in the making like the sun, yet much younger at 100,000 to 200,000 years old and some 1,370 light-years away. A single light-year is 6 trillion miles. In a cosmic first, McClure and her team stared deep into the gas disk around the baby star and detected solid specks condensing — signs of early planet formation. A gap in the outer part of the disk gave allowed them to gaze inside, thanks to the way the star tilts toward Earth. They detected silicon monoxide gas as well as crystalline silicate minerals, the ingredients for what's believed to be the first solid materials to form in our solar system more than 4.5 billion years ago. The action is unfolding in a location comparable to the asteroid belt between Mars and Jupiter containing the leftover building blocks of our solar system's planets. The condensing of hot minerals was never detected before around other young stars, 'so we didn't know if it was a universal feature of planet formation or a weird feature of our solar system,' McClure said in an email. 'Our study shows that it could be a common process during the earliest stage of planet formation.' While other research has looked at younger gas disks and, more commonly, mature disks with potential planet wannabes, there's been no specific evidence for the start of planet formation until now, McClure said. In a stunning picture taken by the ESO's Alma telescope network, the emerging planetary system resembles a lightning bug glowing against the black void. It's impossible to know how many planets might form around HOPS-315. With a gas disk as massive as the sun's might have been, it could also wind up with eight planets a million or more years from now, according to McClure. Purdue University's Merel van 't Hoff, a co-author, is eager to find more budding planetary systems. By casting a wider net, astronomers can look for similarities and determine which processes might be crucial to forming Earth-like worlds. 'Are there Earth-like planets out there or are we like so special that we might not expect it to occur very often?' ___ AP video journalist Javier Arciga contributed to this report. ___ The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Department of Science Education and the Robert Wood Johnson Foundation. The AP is solely responsible for all content. Marcia Dunn, The Associated Press

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store