
China's Mars rover makes stunning discovery in search for evidence of ancient water
The rover landed in Utopia Planitia, a plain within the largest known impact basin on Mars, near a series of ridges in the planet's northern hemisphere. Scientists have long questioned whether the ridges might represent the remnants of a shoreline, so Zhurong set out in search of evidence of ancient water.
The study, based on data collected by Zhurong as its radar instrument peered beneath the surface to examine hidden rock layers, was published Monday in the journal Proceedings of the National Academy of Sciences.
'We're finding places on Mars that used to look like ancient beaches and ancient river deltas,' said study coauthor Benjamin Cardenas, assistant professor of geology in the department of geosciences at Penn State, in a statement. 'We found evidence for wind, waves, no shortage of sand — a proper, vacation-style beach.'
What's more, it's possible the Martian environment was warmer and wetter for tens of millions of years longer than previously suspected, the study authors wrote.
The revelations add to the increasing evidence that the red planet once had a warmer, wetter climate as well as an ocean that covered one-third of the Martian surface — conditions that might have created a hospitable environment for life.
The search for Mars' ancient ocean
In the 1970s, NASA's Mariner 9 and Viking 2 were the first missions to spy features that suggested the presence of an ancient ocean on Mars.
Utopia Planitia dates to the Hesperian Period, or 3.7 billion to 3 billion years ago, and it lacks abundant evidence for standing water, unlike more ancient regions of Mars, said Aaron Cavosie, a planetary scientist and senior lecturer at the Space Science and Technology Centre at Curtin University in Perth, Australia. Cavosie was not involved in the new study.
'The Mariner 9 orbiter first imaged giant canyons on Hesperian surfaces of Mars in the 1970s, but they are generally viewed as representing catastrophic bursts of groundwater to the surface, rather than evidence for standing water,' Cavosie said. 'The idea is that Mars' climate cooled down by this time and the surface dried up.'
Multiple spacecraft have captured observations that suggest much of Mars' water escaped to space as the planet's atmosphere disappeared — astronomers are still investigating what caused this dramatic transformation. As the planet cooled, some of the water likely moved underground in the form of ice or combined with rocks to create minerals.
Viking's images showcased what appeared to be a shoreline in the northern hemisphere. But in stark contrast to the level shorelines on Earth, the Martian feature was jaggedly irregular, with height differences of up to 6.2 miles (10 kilometers).
Study coauthor Michael Manga, a professor of Earth and planetary science at the University of California, Berkeley, and his colleagues previously suggested that volcanic activity in the region, as well as a change in Mars' rotation, altered the shoreline and caused it to be uneven over time.
'Because the spin axis of Mars has changed, the shape of Mars has changed. And so what used to be flat is no longer flat,' Manga said.
But what scientists needed most to answer their questions were observations made from 'boots on the ground,' or in this case, rover tracks, Cavosie said. Zhurong would be able to see whether the rock layers buried in Utopia Planitia were volcanic or if they contained sediments consistent with those of an ocean.
The dip of a shoreline
When Zhurong landed, it traveled along Utopia Planitia's ridges, collecting data up to 260 feet (80 meters) beneath the surface with radar.
Between 32.8 and 114.8 feet (10 and 35 meters) down, the rover's radar detected sedimentary structures similar to layered beaches on Earth that dipped at a 14.5-degree angle. The radar also measured the size of the particles, which matched that of sand grains.
'The structures don't look like sand dunes,' Manga said. 'They don't look like an impact crater. They don't look like lava flows. That's when we started thinking about oceans. The orientation of these features (is) parallel to what the old shoreline would have been.'
The structures strongly resembled coastal sediment deposits on Earth, such as those found in the Bay of Bengal, formed by the presence of a long-term stable ocean, the study authors said.
The team said it believes the rover found 'foreshore deposits,' which take millions of years to form as sediments carried by tides and waves slope downward toward an ocean.
'This stood out to us immediately because it suggests there were waves, which means there was a dynamic interface of air and water,' Cardenas said. 'When we look back at where the earliest life on Earth developed, it was in the interaction between oceans and land, so this is painting a picture of ancient habitable environments, capable of harboring conditions friendly toward microbial life.'
Rivers likely helped dump sediment into the oceans, which was then distributed by waves to create beaches. Sedimentary rocks, carved channels and even the remains of an ancient river delta, studied by NASA's Perseverance rover, have shown how water once shaped the Martian landscape.
After the ocean dried up, the beaches were likely blanketed by volcanic eruptions and material from dust storms, effectively preserving the shoreline, Cardenas said.
'It's always a challenge to know how the last 3.5 billion years of erosion on Mars might have altered or completely erased evidence of an ocean,' he said. 'But not with these deposits. This is a very unique dataset.'
Now, the team wants to determine the height of the waves and tides within the ocean, how long the ocean persisted, and whether it provided a potentially hospitable environment, Magna said.
François Forget, senior research scientist and research director at the French National Centre for Scientific Research, said he isn't entirely convinced by the hypothesis presented in the study that only ocean shorelines can explain the radar data. Forget was not involved in the new research.
'I do not think that we can be certain that the observations could not be explained by dune processes,' or the formation of sand dunes, which Forget said he believes to be more likely on Mars.
Meanwhile, Dr. Joe McNeil, a planetary scientist and postdoctoral researcher at London's Natural History Museum, believes the findings add weight to the hypothesis of an ancient northern ocean on Mars by providing crucial subsurface evidence. McNeil was not involved in the new study.
'If these coastal deposits truly represent deposition of sediments at the edge of an ancient ocean, it suggests a prolonged period of stable liquid water, which has major implications for Mars' climate history,' McNeil said. 'It would mean Mars had conditions that could have supported a hydrological system with potential habitable environments for substantial amounts of time.'
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
7 hours ago
- Yahoo
Penn State Student Cracks 100-Year-Old Equation, Boosting Wind Turbine Efficiency
A Penn State engineering student has cracked a 100-year-old aerodynamic puzzle, offering a refined approach that could transform wind turbine design. Divya Tyagi, an undergraduate at the Schreyer Honors College, developed a solution that addresses gaps in a 1935 model by British aerodynamicist Hermann Glauert, providing engineers with a more robust tool for renewable energy innovation. Glauert's original work established a theoretical limit for wind turbine power output but overlooked key forces, such as wind pressure and blade bending, that turbines encounter daily. Tyagi's research, rooted in calculus of variations, fills these gaps by calculating precise values for thrust and bending moment across various tip speed ratios — critical for modern turbine performance. 'I created an addendum to Glauert's problem, which determines the optimal aerodynamic performance of a wind turbine by solving for the ideal flow conditions,' Tyagi said, per a Penn State news release. Her thesis, published in Wind Energy Science, earned her the Anthony E. Wolk Award for the best aerospace engineering project at Penn State. Professor Sven Schmitz, her adviser and co-author, highlighted the breakthrough's scope. 'Glauert's original work focused only on the power coefficient. But turbines also have to survive physical loads, like wind pressure pushing against the blades,' he said, per The Brighter Side. 'Tyagi's method accounts for these forces and gives us a clearer picture of total aerodynamic performance.' The simplicity of Tyagi's approach, using calculus of variations to optimize complex interactions, could benefit both classrooms and industry. 'The real impact will be on the next generation of wind turbines using the new knowledge that has been unveiled,' Schmitz added, according to Penn State. 'As for Divya's elegant solution, I think it will find its way into classrooms across the country and around the world.' Tyagi noted the practical payoff: 'Improving the power coefficient of a large wind turbine by just 1% has significant impacts on the energy production of a turbine. … A 1% improvement in power coefficient could notably increase a turbine's energy output, potentially powering an entire neighborhood.' Her work also enhances turbine durability, potentially reducing costs with lighter, longer-lasting designs. Now pursuing a master's degree, Tyagi is tackling airflow around helicopter rotors for the U.S. Navy, using computational fluid dynamics to improve flight safety. Reflecting on her undergraduate effort, she said, 'I would spend about 10 to 15 hours a week between the problem, writing the thesis, and on research. It took a long time because it was so math-intensive. But I feel really proud now, seeing all the work I've done.' Schmitz, who had challenged four students with the problem over decades, credited Tyagi's persistence. 'There had to be an easier way to do it. That's when Divya came in. She was the fourth student I challenged with looking at it, and she was the only one who took it on. Her work is truly impressive.' Her contribution could reshape wind energy as the industry seeks more efficient and resilient turbines. Solve the daily Crossword
Yahoo
7 hours ago
- Yahoo
The asteroid that will spare Earth might hit the moon instead. What happens if it does?
The asteroid known as 2024 YR4 is out of sight yet still very much on scientists' minds. The building-sized object, which initially appeared to be on a potential collision course with Earth, is currently zooming beyond the reach of telescopes on its orbit around the sun. But as scientists wait for it to reappear, its revised trajectory is now drawing attention to another possible target: the moon. Discovered at the end of 2024, the space rock looked at first as if it might hit our planet by December 22, 2032. The chance of that impact changed with every new observation, peaking at 3.1% in February — odds that made it the riskiest asteroid ever observed. Ground- and space-based telescope observations were crucial in helping astronomers narrow in on 2024 YR4's size and orbit. With more precise measurements, researchers were ultimately able to rule out an Earth impact. The latest observations of the asteroid in early June, before YR4 disappeared from view, have improved astronomers' knowledge of where it will be in seven years by almost 20%, according to NASA. That data shows that even with Earth avoiding direct impact, YR4 could still pose a threat in late 2032 by slamming into the moon. The impact would be a once-in-a-lifetime event for humanity to witness — but it could also send fine-grained lunar material hurtling toward our planet. While Earth wouldn't face any significant physical danger should the asteroid strike the moon, there is a chance that any astronauts or infrastructure on the lunar surface at that time could be at risk — as could satellites orbiting our planet that we depend on to keep vital aspects of life, including navigation and communications, running smoothly. Any missions in low-Earth orbit could also be in the pathway of the debris, though the International Space Station is scheduled to be deorbited before any potential impact. Initially, YR4 was seen as a case study in why scientists do the crucial work of planetary defense, discovering and tracking asteroids to determine which ones have a chance of colliding with Earth. Now, astronomers say this one asteroid could redefine the range of risks the field addresses, expanding the purview of the work to include monitoring asteroids that might be headed for the moon as well. 'We're starting to realize that maybe we need to extend that shield a little bit further,' said Dr. Paul Wiegert, a professor of astronomy and physics at the Western University in London, Ontario. 'We now have things worth protecting that are a bit further away from Earth, so our vision is hopefully expanding a little bit to encompass that.' In the meantime, researchers are assessing just how much chaos a potential YR4 lunar impact could create — and whether anything can be done to mitigate it. 'City killer' on the moon The threatening hunk of rock appears as just a speck of light through even the strongest astronomical tools. In reality, YR4 is likely about 60 meters (about 200 feet) in diameter, according to observations in March by the James Webb Space Telescope, the most powerful space-based observatory in operation. 'Size equals energy,' said Julien de Wit, associate professor of planetary sciences at the Massachusetts Institute of Technology, who observed YR4 with Webb. 'Knowing YR4's size helped us understand how big of an explosion it could be.' Astronomers believe they have found most of the near-Earth asteroids the field would classify as 'planet killers' — space rocks that are 1 kilometer (0.6 mile) across or larger and could be civilization-ending, said Dr. Andy Rivkin, planetary astronomer from the Johns Hopkins University's Applied Physics Laboratory in Maryland. The planet killer that slammed into Earth 66 million years ago and led to the extinction of dinosaurs was estimated to be roughly 6 miles (about 10 kilometers) in diameter. Smaller asteroids such as YR4, which was colloquially dubbed a 'city killer' after its discovery, could cause regional devastation if they collide with our planet. About 40% of near-Earth space rocks larger than 140 meters (460 feet) but smaller than a kilometer — capable of more widespread destruction — have been identified, according to NASA. But astronomers have never really had a chance to watch a collision of that size occur on the moon in real time, Wiegert said. The latest glimpses of YR4 on June 3 before it passed out of view revealed a 4.3% chance of a YR4 lunar impact — small but decent enough odds for scientists to consider how such a scenario might play out. A striking meteor shower — and a risk Initial calculations suggest the impact has the largest chance of occurring on the near side of the moon — the side we can see from Earth. 'YR4 is so faint and small we were able to measure its position with JWST longer than we were able to do it from the ground,' said Rivkin, who has been leading the Webb study of YR4. 'And that lets us calculate a much more precise orbit for it, so we now have a much better idea of where it will be and won't be.' The collision could create a bright flash that would be visible with the naked eye for several seconds, according to Wiegert, lead author of a recent paper submitted to the American Astronomical Society journals analyzing the potential lunar impact. The collision could create an impact crater on the moon estimated at 1 kilometer wide (0.6 miles wide), Wiegert said — about the size of Meteor Crater in Arizona, Rivkin added. It would be the largest impact on the moon in 5,000 years and could release up to 100 million kilograms (220 million pounds) of lunar rocks and dust, according to the modeling in Wiegert's study. Even pieces of debris that are just tens of centimeters in size could present a hazard for any astronauts who may be present on the moon, or any structures they have built for research and habitation, Wiegert said. The moon has no atmosphere, so the debris from the event could be widespread on the lunar surface, he added. On average, the moon is 238,855 miles (384,400 kilometers) away from Earth, according to NASA. Particles the size of large sand grains, ranging from 0.1 to 10 millimeters in size, of lunar material could reach Earth between a few days and a few months after the asteroid strike because they'll be traveling incredibly fast, creating an intense, eye-catching meteor shower, Wiegert said. 'There's absolutely no danger to anyone on the surface,' Wiegert said. 'We're not expecting large boulders or anything larger than maybe a sugar cube, and our atmosphere will protect us very nicely from that. But they're traveling faster than a speeding bullet, so if they were to hit a satellite, that could cause some damage.' Not all lunar debris that reaches the Earth is so small, and it depends on the angle and type of impact to the moon, according to Washington University in St. Louis. Space rocks slamming into the lunar surface over millions of years have resulted in various sizes of lunar meteorites found on Earth. Preparing for impact Hundreds to thousands of impacts from millimeter-size debris could affect Earth's satellite fleet, meaning satellites could experience up to 10 years' equivalent of meteor debris exposure in a few days, Wiegert said. Humankind depends on vital space infrastructure, said Dan Oltrogge, chief scientist at COMSPOC, a space situational awareness software company that develops solutions for handling hazards such as space debris. 'Space touches almost every aspect of our lives today, ranging from commerce, communications, travel, industry, education, and social media, so a loss of access to and effective use of space presents a serious risk to humanity,' Oltrogge said. The event is unlikely to trigger a Kessler Syndrome scenario in which debris from broken satellites would collide with others to create a domino effect or fall to Earth. Instead, it might be more akin to when a piece of gravel strikes a car windshield at high speed, meaning solar panels or other delicate satellite parts might be damaged, but the satellite will remain in one piece, Wiegert said. While a temporary loss of communication and navigation from satellites would create widespread difficulties on Earth, Wiegert said he believes the potential impact is something for satellite operators, rather than the public, to worry about. Protecting Earth and the moon Scientists and astronomers around the world are thinking about the possible scenarios since they could not rule out a lunar impact before YR4 disappeared from view, Wiegert said. 'We realize that an impact to the moon could be consequential, so what would we do?' de Wit said. A potential planetary defense plan might be clearer if the asteroid were headed straight for Earth. Rivkin helped test one approach in September 2022 as the principal investigator of NASA's Double Asteroid Redirection Test, or DART, which intentionally slammed a spacecraft into the asteroid Dimorphos in September 2022. Dimorphos is a moonlet asteroid that orbits a larger parent asteroid known as Didymos. Neither poses a threat to Earth, but the double-asteroid system was a perfect target to test deflection technology because Dimorphos' size is comparable to asteroids that could harm our planet in the event of an impact. The DART mission crashed a spacecraft into the asteroid at 13,645 miles per hour (6 kilometers per second) to find out whether such a kinetic impact would be enough to change the motion of a celestial object in space. It worked. Since the day of the collision, data from ground-based telescopes has revealed that the DART spacecraft did alter Dimorphos' orbital period — or how long it takes to make a single revolution around Didymos — by about 32 or 33 minutes. And scientists have continued to observe additional changes to the pair, including how the direct hit likely deformed Dimorphos due to the asteroid's composition. Similarly, if YR4 strikes the moon and doesn't result in damaging effects for satellites, it could create a tremendous opportunity for researchers to learn how the lunar surface responds to impacts, Wiegert said. But whether it would make sense to send a DART-like mission to knock YR4 off a collision course with the moon remains to be seen. It will depend on future risk assessments by planetary defense groups when the asteroid comes back into view around 2028, de Wit said. Though defense plans for a potential moon impact still aren't clear, YR4's journey underscores the importance — and the challenges — of tracking objects that are often impossible to see. Hidden threats YR4 was detected by the Asteroid Terrestrial-impact Last Alert System, or ATLAS telescope, in Río Hurtado, Chile, two days after the asteroid had already made its closest pass by Earth, hidden by the bright glare of the sun as it approached our planet. The same thing occurred when an asteroid measuring roughly 20 meters (about 65 feet) across hit the atmosphere and exploded above Chelyabinsk, Russia, on February 15, 2013, damaging thousands of buildings, according to the European Space Agency. While no one died, about 1,500 people were injured when the windows in homes and businesses blew out due to the shock wave. Trying to observe asteroids is challenging for many reasons, Rivkin said. Asteroids are incredibly faint and hard to see because rather than emitting their own light, they only reflect sunlight. And because of their relatively tiny size, interpreting observations is not a clear-cut process like looking through a telescope at a planet such as Mars or Jupiter. 'For asteroids, we only see them as a point of light, and so by measuring how bright they are and measuring their temperature, basically we can get a size based on how big do they have to be in order to be this bright,' Rivkin said. For decades, astronomers have had to search for faint asteroids by night, which means missing any that may be on a path coming from the direction of the sun — creating the world's biggest blind spot for ground-based telescopes that can't block out our star's luminosity. But upcoming telescopes — including NASA's NEO Surveyor expected to launch by the end of 2027 and the European Space Agency's Near-Earth Object Mission in the InfraRed, or NEOMIR satellite, set for liftoff in the early 2030s — could shrink that blind spot, helping researchers detect asteroids much closer to the sun. 'NEOMIR would have detected asteroid 2024 YR4 about a month earlier than ground-based telescopes did,' said Richard Moissl, head of ESA's Planetary Defence Office, in a statement. 'This would have given astronomers more time to study the asteroid's trajectory and allowed them to much sooner rule out any chance of Earth impact in 2032.' NASA and other space agencies are constantly on the lookout for potentially hazardous asteroids, defined as such based on their distance from Earth and ability to cause significant damage should an impact occur. Asteroids that can't get any closer to our planet than one-twentieth of Earth's distance from the sun are not considered to be potentially hazardous asteroids, according to NASA. When the new Vera C. Rubin Observatory, located in the Andes in Chile, released its first stunning images of the cosmos in June, researchers revealed the discovery of more than 2,100 previously unknown asteroids after seven nights of those newly detected space rocks, seven were near-Earth objects. A near-Earth object is an asteroid or comet on an orbit that brings it within 120 million miles (about 190 million kilometers) of the sun, which means it has the potential to pass near Earth, according to NASA. None of the new ones detected by Rubin were determined to pose a threat to our planet. Rubin will act as a great asteroid hunter, de Wit said, while telescopes such as Webb could be a tracker that follow up on Rubin's discoveries. A proposal by Rivkin and de Wit to use Webb to observe YR4 in the spring of 2026 has just been approved. Webb is the only telescope with a chance of glimpsing the asteroid before 2028. 'This newly approved program will buy decision makers two extra years to prepare — though most likely to relax, as there is an 80% chance of ruling out impact — while providing key experience-based lessons for handling future potential impactors to be discovered by Vera Rubin,' de Wit said. And because of the twists and turns of YR4's tale thus far, asteroids that have potential to affect the moon could become objects of even more intense study in the future. 'If this really is a thing that we only have to worry about every 5,000 years or something, then maybe that's less pressing,' Rivkin said. 'But even just asking what would we do if we did see something that was going to hit the moon is at least something that we can now start thinking about.' Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more.


CNN
12 hours ago
- CNN
Start your week smart: NASA's future, Starvation in Gaza, Stabbing incident, Extreme heat risk, Swimming showdown
If you've been suffering through the high temperatures that have scorched much of the country this summer, you know the toll it can take on your body, leaving you dizzy, dehydrated and, in some severe cases, at risk of death. But there's another lesser-known impact of extreme heat — and it might surprise you. Here's what else you need to know to start your week smart. 🔦 Few US government agencies have navigated as much turmoil in recent months as NASA. With the impending loss of thousands of jobs looming, this week saw the release of a scathing letter from nearly 300 current and former NASA employees and the abrupt resignation of the director of the Goddard Space Flight Center. Scientists and agency workers criticized budget cuts, grant cancellations and a 'culture of organizational silence.' They also raised concerns about suggested changes to a system of safety checks and balances. President Donald Trump appointed US Secretary of Transportation Sean Duffy as interim NASA administrator to replace Janet Petro, a longtime agency employee. That came after the nomination of tech billionaire Jared Isaacman to lead NASA was rescinded. Some scientists are criticizing the agency as the Trump administration tries to dismantle the NASA Goddard Institute for Space Studies, one of the country's top climate labs. Employees are working remotely after their New York City office was shut down. Back in March, NASA astronauts Suni Williams and Butch Wilmore returned to Earth after gaining international attention as their short trip to space stretched into a saga lasting more than nine months. It's an example of how quickly things can go sideways. Meanwhile, leaks have plagued the International Space Station. 📸 In photos: Astronaut Don Pettit captures unique views of the cosmos. Take a look. Blue Origin took a star-studded all-female crew — including singer Katy Perry and journalist Gayle King — to the 'edge of space' and back. The mission had its critics, but is this the future of spaceflight? Israel says it will open aid corridors as fury grows over starvation in Gaza A 'random' stabbing at a Michigan Walmart left 11 injured, officials say. Here's what we know so far Alabama toddler dies in hot car while in state custody GET '5 THINGS' IN YOUR INBOX If your day doesn't start until you're up to speed on the latest headlines, then let us introduce you to your new favorite morning fix. Sign up here for the '5 Things' newsletter. Looking for a way to beat the summer heat? July 28 is National Water Park Day, so grab your swimsuits and hit the water slide or tube down a lazy river! The International Monetary Fund will release its July 2025 World Economic Outlook Update. This publication provides analyses and projections of the global economy. In an update in April, the IMF said forecasts for global growth had been revised markedly down compared with its January update, reflecting effective tariff rates at levels not seen in a century. The Federal Reserve is set to conclude its fifth interest rate meeting since President Donald Trump returned to office in January, with policymakers expected to hold rates steady once again. The decision is likely to draw sharp criticism from Trump, who has repeatedly clashed with Fed Chair Jerome Powell over the bank's refusal to cut rates. Tension between the two was evident last week during a tour of the Fed's $2.5 billion headquarters renovation, a project the Trump administration has used to intensify pressure on Powell. 📹 Watch this awkward exchange between Powell and the president. The National Transportation Safety Board will begin a three-day public hearing to investigate the January 29 mid-air collision between a regional jet and an Army helicopter over the Potomac River near Washington, DC, that killed 67 people. President Trump's so-called reciprocal tariffs are set to go into effect on August 1 after a 90-day delay, impacting multiple countries, including Mexico, Canada and the European Union. If Trump's proposed duties of 30% do kick in, Americans could wind up paying more for everything from produce to medical equipment, electronics and alcohol. It's also the day we get the monthly jobs report for July. In this episode of the 'One Thing' podcast, CNN's David Rind speaks to science journalist Jane C. Hu about why Republicans are increasingly open to the purported healing properties of psychedelics. Listen here. Prev Next 📸 Check out more images curated by the CNN Photo team. The Tour de France, which began on July 5, wraps up today in Paris. After more than 2,000 miles of racing, riders will make their way down the Champs-Élysées to the finish line. (TK look for a London write) The World Aquatics Championships kick off today in Singapore, and all eyes will be on the high-stakes showdown between swimming legend Katie Ledecky and Canadian phenom Summer McIntosh. Ledecky, 28, boasts nine Olympic golds and 21 world titles, while 18-year-old McIntosh arrives with four Olympic medals and three world records set just last month. 📹 Hear how Ledecky is preparing to face her fiercest challenger yet. And the World Dog Surfing Championships are Saturday at Linda Mar Beach in Pacifica, California. What began as the short-lived TV comedy series 'Police Squad!' in the early 1980s got a second life as 'The Naked Gun' series of movies starring Leslie Nielsen and George Kennedy. Now, more than 30 years after 1994's 'The Naked Gun 33 1/3: The Final Insult,' a reboot starring Liam Neeson and Pamela Anderson arrives on the big screen this Friday. Will it be riddled with moronic jokes, toilet humor and sight gags, just like its predecessors? Let's hope so! 🧠 Take CNN's weekly news quiz to see how much you remember from the week that was! So far, 5.4% of fellow quiz fans have gotten eight or more questions right. How will you fare? Heavy metal icon and reality TV star Ozzy Osbourne passed away last week at the age of 76. Rest in peace, Prince of Darkness. (Click here to view) Today's edition of 5 Things Sunday was edited and produced by CNN's Tricia Escobedo.