
Gravity Could Be Proof We're Living in a Computer Simulation, New Theory Suggests
We have long taken it for granted that gravity is one of the basic forces of nature–one of the invisible threads that keeps the universe stitched together. But suppose that this is not true. Suppose the law of gravity is simply an echo of something more fundamental: a byproduct of the universe operating under a computer-like code.
That is the premise of my latest research, published in the journal AIP Advances. It suggests that gravity is not a mysterious force that attracts objects towards one another, but the product of an informational law of nature that I call the second law of infodynamics.
It is a notion that seems like science fiction—but one that is based in physics and evidence that the universe appears to be operating suspiciously like a computer simulation. In digital technologies, right down to the apps in your phone and the world of cyberspace, efficiency is the key. Computers compact and restructure their data all the time to save memory and computer power. Maybe the same is taking place all over the universe?
Information theory, the mathematical study of the quantification, storage and communication of information, may help us understand what's going on. Originally developed by mathematician Claude Shannon, it has become increasingly popular in physics and is used in a growing range of research areas.
In a 2023 paper, I used information theory to propose my second law of infodynamics. This stipulates that information 'entropy', or the level of information disorganisation, will have to reduce or stay static within any given closed information system. This is the opposite of the popular second law of thermodynamics, which dictates that physical entropy, or disorder, always increases.
Take a cooling cup of coffee. Energy flows from hot to cold until the temperature of the coffee is the same as the temperature of the room and its energy is minimum—a state called thermal equilibrium. The entropy of the system is a maximum at this point—with all the molecules maximally spread out, having the same energy. What that means is that the spread of energies per molecule in the liquid is reduced.
If one considers the information content of each molecule based on its energy, then at the start, in the hot cup of coffee, the information entropy is maximum and at equilibrium the information entropy is minimum. That's because almost all molecules are at the same energy level, becoming identical characters in an informational message. So the spread of different energies available is reduced when there's thermal equilibrium.
But if we consider just location rather than energy, then there's lots of information disorder when particles are distributed randomly in space—the information required to keep pace with them is considerable. When they consolidate themselves together under gravitational attraction, however, the way planets, stars and galaxies do, the information gets compacted and more manageable.
In simulations, that's exactly what occurs when a system tries to function more efficiently. So, matter flowing under the influence of gravity need not be a result of a force at all. Perhaps it is a function of the way the universe compacts the information that it has to work with.
Here, space is not continuous and smooth. Space is made up of tiny 'cells' of information, similar to pixels in a photo or squares on the screen of a computer game. In each cell is basic information about the universe—where, say, a particle is–and all are gathered together to make the fabric of the universe.
If you place items within this space, the system gets more complex. But when all of those items come together to be one item instead of many, the information is simple again.
The universe, under this view, tends to naturally seek to be in those states of minimal information entropy. The real kicker is that if you do the numbers, the entropic 'informational force' created by this tendency toward simplicity is exactly equivalent to Newton's law of gravitation, as shown in my paper.
This theory builds on earlier studies of 'entropic gravity' but goes a step further. In connecting information dynamics with gravity, we are led to the interesting conclusion that the universe could be running on some kind of cosmic software. In an artificial universe, maximum-efficiency rules would be expected. Symmetries would be expected. Compression would be expected. And law–that is, gravity—would be expected to emerge from these computational rules.
We may not yet have definitive evidence that we live in a simulation. But the deeper we look, the more our universe seems to behave like a computational process.
Melvin M. Vopson is an associate professor of physics at the University of Portsmouth. This article is republished from The Conversation under a Creative Commons license. Read the original article.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
3 hours ago
- Yahoo
How running for 75 minutes a week could help you live longer — and feel younger
When you buy through links on our articles, Future and its syndication partners may earn a commission. It's no secret that regular exercise is good for your health, but new research has uncovered a fascinating link between running and biological aging. In a study of over 4,400 U.S. adults, researchers found that those who jogged or ran for at least 75 minutes per week had significantly longer leukocyte telomeres. That might sound like something out of a science textbook, but it's really just a fancy way of saying your cells look younger on the inside. Telomeres sit at the ends of your chromosomes and act like little caps that protect your DNA. The longer they are, the better off you tend to be when it comes to aging. If you're looking to get started or find the right shoes for your runs, check out our guide to the best running shoes for every type of runner. This Brooks sneaker offers excellent comfort and support for everyday runs. The 27% saving applies to the women's model, but you'll find the same deal on the men's version as well. Just double-check that your size and favorite color are included in the offer before Deal The magic number is 75 minutes a week The study used data from the National Health and Nutrition Examination Survey and grouped people into three categories based on how much they ran each week. Only those who hit 75 minutes or more saw significant benefits to their telomere length, even after researchers controlled for differences in age, lifestyle, and medical history. In fact, the difference was big enough to suggest runners could be roughly 12 years biologically younger than those who don't run regularly. People who ran less than that? Well, they pretty much looked the same as the non-runners. While the results are compelling, it's worth being cautious. The results come from a single snapshot in time and rely on people accurately reporting their exercise, which can sometimes be optimistic. Still, the message is clear and encouraging: making running a regular habit might just be one of the simplest ways to help your cells stay spry. How to make it work for you The best part is that 75 minutes per week breaks down to just over 10 minutes (and 43 seconds if we are being pernickety) a day. That's a realistic goal for many people. If you're just getting started, try alternating walking and running using a beginner-friendly approach like Jeffing. This run-walk method can help you build endurance while easing the impact on your joints. Our fitness editor Jane swapped running for 'Jeffing' for a week and found it surprisingly enjoyable. And if running isn't your thing, other vigorous activities like swimming, cycling, or cardio workouts could offer similar benefits. Whichever route you choose, the science is stacking up in favor of getting your heart rate up. Follow Tom's Guide on Google News to get our up-to-date news, how-tos, and reviews in your feeds. Make sure to click the Follow button. More from Tom's Guide Forget the sauna — soaking in a hot tub could be better for your health, says new study No, not crunches — trainer says these 5 bodyweight moves are the secret to building stronger abs Fibermaxxing is the latest gut health trend, but does it really work?
Yahoo
8 hours ago
- Yahoo
Millions of people are suffering from brain fog. A new study will find out why
Millions of people who recover from infections like COVID-19, influenza and glandular fever are affected by long-lasting symptoms. These include chronic fatigue, brain fog, exercise intolerance, dizziness, muscle or joint pain and gut problems. And many of these symptoms worsen after exercise, a phenomenon known as post-exertional malaise. Medically the symptoms are known as myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS). The World Health Organization classifies this as a post viral fatigue syndrome, and it is recognised by both the WHO and the United States Centers for Disease Control and Prevention as a brain disorder. Experiencing illness long after contracting an infection is not new, as patients have reported these symptoms for decades. But COVID-19 has amplified the problem worldwide. Nearly half of people with ongoing post-COVID symptoms – a condition known as long-COVID – now meet the criteria for ME/CFS. Since the start of the pandemic in 2020, it is estimated that more than 400 million people have developed long-COVID. To date, no widely accepted and testable mechanism has fully explained the biological processes underlying long-COVID and ME/CFS. Our work offers a new perspective that may help close this gap. Our research group studies blood and the cardiovascular system in inflammatory diseases, as well as post-viral conditions. We focus on coagulation, inflammation and endothelial cells. Endothelial cells make up the inner layer of blood vessels and serve many important functions, like regulating blood clotting, blood vessel dilation and constriction, and inflammation. Our latest review aims to explain how ME/CFS and long-COVID start and progress, and how symptoms show up in the body and its systems. By pinpointing and explaining the underlying disease mechanisms, we can pave the way for better clinical tools to diagnose and treat people living with ME/CFS and long-COVID. What is endothelial senescence? In our review, our international team proposes that certain viruses drive endothelial cells into a half-alive, 'zombie-like' state called cellular senescence. Senescent endothelial cells stop dividing, but continue to release molecules that awaken and confuse the immune system. This prompts the blood to form clots and, at the same time, prevent clot breakdown, which could lead to the constriction of blood vessels and limited blood flow. By placing 'zombie' blood-vessel cells at the centre of these post-viral diseases, our hypothesis weaves together microclots, oxygen debt (the extra oxygen your body needs after strenuous exercise to restore balance), brain-fog, dizziness, gut leakiness (a digestive condition where the intestinal lining allows toxins into the bloodstream) and immune dysfunction into a single, testable narrative. From acute viral infection to 'zombie' vessels Viruses like SARS-CoV-2, Epstein–Barr virus, HHV-6, influenza A, and enteroviruses (a group of viruses that cause a number of infectious illnesses which are usually mild) can all infect endothelial cells. They enable a direct attack on the cells that line the inside of blood vessels. Some of these viruses have been shown to trigger endothelial senescence. Multiple studies show that SARS-CoV-2 (the virus which causes COVID-19 disease) has the ability to induce senescence in a variety of cell types, including endothelial cells. Viral proteins from SARS-CoV-2, for example, sabotage DNA-repair pathways and push the host cell towards a senescent state, while senescent cells in turn become even more susceptible to viral entry. This reciprocity helps explain why different pathogens can result in the same chronic illness. Influenza A, too, has shown the ability to drive endothelial cells into a senescent, zombie-like state. What we think is happening We propose that when blood-vessel cells turn into 'zombies', they pump out substances that make blood thicker and prone to forming tiny clots. These clots slow down circulation, so less oxygen reaches muscles and organs. This is one reason people feel drained. During exercise, the problem worsens. Instead of the vessels relaxing to allow adequate bloodflow, they tighten further. This means that muscles are starved of oxygen and patients experience a crash the day after exercise. In the brain, the same faulty cells let blood flow drop and leak, bringing on brain fog and dizziness. In the gut, they weaken the lining, allowing bits of bacteria to slip into the bloodstream and trigger more inflammation. Because blood vessels reach every corner of the body, even scattered patches of these 'zombie' cells found in the blood vessels can create the mix of symptoms seen in long-COVID and ME/CFS. Immune exhaustion locks in the damage Some parts of the immune system kill senescent cells. They are natural-killer cells, macrophages and complement proteins, which are immune molecules capable of tagging and killing pathogens. But long-COVID and ME/CFS frequently have impaired natural-killer cell function, sluggish macrophages and complement dysfunction. Senescent endothelial cells may also send out a chemical signal to repel immune attack. So the 'zombie cells' actively evade the immune system. This creates a self-sustaining loop of vascular and immune dysfunction, where senescent endothelial cells persist. In a healthy person with an optimally functioning immune system, these senescent endothelial cells will normally be cleared. But there is significant immune dysfunction in ME/CFS and long-COVID, and this may enable the 'zombie cells' to survive and the disease to progress. Where the research goes next There is a registered clinical trial in the US that is investigating senescence in long-COVID. Our consortium is testing new ways to spot signs of ageing in the cells that line our blood vessels. First, we expose healthy endothelial cells in the lab to blood from patients to see whether it pushes the cells into a senescent, or 'zombie,' state. At the same time, we are trialling non‑invasive imaging and fluorescent probes that could one day reveal these ageing cells inside the body. In selected cases, tissue biopsies may later confirm what the scans show. Together, these approaches aim to pinpoint how substances circulating in the blood drive cellular ageing and how that, in turn, fuels disease. Our aim is simple: find these ageing endothelial cells in real patients. Pinpointing them will inform the next round of clinical trials and open the door to therapies that target senescent cells directly, offering a route to healthier blood vessels and, ultimately, lighter disease loads. Burtram C. Fielding is Dean Faculty of Sciences and Professor in the Department of Microbiology, Stellenbosch University This article is republished from The Conversation under a Creative Commons license. Read the original article.
Yahoo
14 hours ago
- Yahoo
Scientists develop revolutionary method to keep dangerous toxins out of rivers and lakes: 'It holds strong potential'
Scientists develop revolutionary method to keep dangerous toxins out of rivers and lakes: 'It holds strong potential' Scientists have created a new water treatment material that can more efficiently purify water for release and extract phosphorus for industrial purposes. According to research on the revolutionary material, published in Springer Nature, the researchers propose the use of "urchin-like La/Cu-Fe3O4 nanocapsules featuring perpendicular La/Cu nanosheets surrounding an Fe3O4 nanosphere core." The material can efficiently remove phosphorus from wastewater to ensure it's pure enough to be released into rivers and lakes. Wastewater must be treated before release, and much of that process involves removing phosphorus, which causes green algae growth, and disinfecting microorganisms like total coliform. The new material accomplishes both highly efficiently. And, the retrieved phosphorus is a valuable industrial material used to make fertilizers, cleaning agents, and detergents. According to TechXplore, the system operates without electricity by using a magnetic field to move the material with precision. This reduces energy consumption by over 99% compared to traditional treatment methods, decreasing energy costs and carbon emissions. "The key to our research is the rapid recovery of phosphorus from sea urchin structural materials and the implementation of a process that precisely controls particles in water with magnetic fields," said Dr. Youngkyun Jung, first author of the study, per TechXplore. The treatment can be implemented in water purification plants, sewage treatment plants, and industrial wastewater treatment sites. The treated water can be used in precision agriculture, smart farms, eco-friendly industrial parks, and public water and sewage systems, helping to improve water security. "It holds strong potential for future expansion into multifunctional water treatment platforms," Jung explained, per TechXplore. This incredible technology can reduce the cost and time it takes to properly treat water for release or recycling. It could work with emergency purification systems for natural disasters, mobile facilities for underdeveloped countries, and portable water treatment devices. This would make water more accessible and affordable to those in need, reducing water scarcity around the world. On top of helping people get usable water, the technology also helps the planet. It ensures harmful materials — like the microorganisms in wastewater — don't pollute lakes and rivers. The eco-friendly system will reduce planet-warming emissions created during the treatment process, helping work toward a cleaner, cooler future. The material has been successfully tested in labs, so the next step is likely further development and eventually pilot projects. How concerned are you about the plastic waste in our oceans? Extremely I'm pretty concerned A little Not much Click your choice to see results and speak your mind. Join our free newsletter for weekly updates on the latest innovations improving our lives and shaping our future, and don't miss this cool list of easy ways to help yourself while helping the planet.