James Webb Space Telescope's discovery of Saturn-like planet is total flex of its imaging power
Astronomers continue to expand the opportunities of discovery using Nasa's James Webb Space Telescope, and the recent findings of a possible Saturn twin is another first for the powerful instrument.
A team of astronomers used Webb's Mid-Infrared Instrument to detect the faint source of light within the debris surrounding a 6.4-million-year-old star known as TWA 7, according to a new study published Wednesday in the journal Nature. What's exciting about this faint signal is that its brightness, color and distance from its star match theoretical predictions for a young, cold Saturn-mass planet.
First Celestial Images From 10-Year Project Photographing The Universe Released
"Our observations reveal a strong candidate for a planet shaping the structure of the TWA 7 debris disk, and its position is exactly where we expected to find a planet of this mass," said Anne-Marie Lagrange, lead author of the paper and CNRS researcher at the Observatoire de Paris-PSL and Université Grenoble Alpes.
To find this hidden planet within the debris disk, the researchers used MIRI's coronagraph to suppress the bright light of the host star to search for any faint nearby objects. According to NASA, this technique is called high-contract imaging and allows astronomers to find objects like exoplanets that would otherwise be completely washed out by the light from their host stars.
Astronomers Detect Pulse From Satellite That Has Been Dead For Decades
The image above is a combination of ground-based observations from ESO's Very Large Telescope and data from Webb's Mid-Infrared Instrument. The star is marked with a circle and a star symbol; the bright orange spot to the right of the star is the possible planet dubbed TWA 7b within the debris disc.
According to the study, TWA 7b has a mass about the same as Saturn and a temperature of around 120 degrees Fahrenheit.
If confirmed, the planet orbiting star TWA 7 will be Webb's first direct image discovery of a low-mass planet and the lightest ever seen using high-contract imaging. More observations will hopefully confirm the planet candidate.Original article source: James Webb Space Telescope's discovery of Saturn-like planet is total flex of its imaging power
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
an hour ago
- Yahoo
Nozzle blows off rocket booster during test for NASA's Artemis program (video)
When you buy through links on our articles, Future and its syndication partners may earn a commission. An upgraded version of one of the solid rocket boosters being used for NASA's Space Launch System (SLS) experienced an anomaly during a test June 26. The Demonstration Motor-1 (DM-1) Static Test took place at Northrop Grumman's facility in Promontory, Utah, simulating a launch-duration burn lasting about two minutes. It was the first demonstration of Grumman's Booster Obsolescence and Life Extension (BOLE) upgrade, an enhanced five-segmented motor designed with greater lifting power for later versions of SLS. Shortly after the spokesperson on Grumman's recording marks T+100 seconds into the test, an outburst of flames can be seen erupting form the top of the engine nozzle. A few seconds later, as another spokesperson announces, "activate aft deluge," an even larger burst comes from the rocket's exhaust, blowing nearby debris into the flames and around the test site. "Whoa," one of the test operators said as burn continued, before audibly gasping. Beyond that in-the-moment reaction, though, the anomaly was not acknowledged during the remainder of the test, which seemed to conclude as planned. "While the motor appeared to perform well through the most harsh environments of the test, we observed an anomaly near the end of the two-plus minute burn. As a new design, and the largest segmented solid rocket booster ever built, this test provides us with valuable data to iterate our design for future developments," Jim Kalberer, Grumman's vice president of propulsion systems, said in a statement. SLS, NASA's rocket supporting the agency's Artemis program, was designed on the foundation of legacy systems used during the space shuttle era. SLS's core stage fuel tank is an augmented version of the one used to launch space shuttles, and the same RS-25 engines responsible for launching the space shuttles are launching to space again on SLS missions. The segments from the shuttle's solid rocket boosters are also flying again, too. Northrop Grumman supported Artemis 1, and will support Artemis 2 and Artemis 3 with shuttle-era hardware, before transitioning to newer hardware for Artemis 4 through Artemis 8. The company's BOLE engines aren't slated to be introduced for launch until Artemis 9, on the SLS Block 2. The upgraded BOLE engines include improved, newly-fabricated parts replacing those no longer in production, carbon fiber composite casings and updated propellant efficiencies that increase the booster's performance more than 10 percent compared to the solid rocket engines being used on earlier SLS launches. Thursday's DM-1 BOLE test included more than 700 points of data collection throughout the booster, which produced over 4 million pounds of thrust, according to Northrop Grumman. Whether the BOLE design will ever fly, however, is far from certain. NASA's proposed budget for 2026 calls for the cancelation of the SLS rocket following Artemis 3.

Yahoo
2 hours ago
- Yahoo
Northrop Grumman tests future Artemis booster, but suffers destructive ‘anomaly'
Northrop Grumman saw some fiery drama during a test of a more powerful version of the solid rocket booster that would be used if NASA's Artemis program ever gets to its ninth launch using the beleaguered Space Launch System rocket. During a Thursday live stream by NASA of a static fire of the 156-foot-long Booster Obsolescence and Life Extension (BOLE) solid rocket motor, the end nozzle blew apart, sending debris flying across the camera followed by a black plume of smoke rising up from Northrop's Promontory, Utah test site. 'Whoa,' said one of the test controllers during the stream, just after the 100-second mark of the hot fire. Laying on its side, the booster was burning through the same amount of fuel that it would as if used on a launch. Northrop Grumman officials addressed the nozzle's demise in a press release later Thursday. 'Today's test pushed the boundaries of large solid rocket motor design to meet rigorous performance requirements,' said Jim Kalberer, Northrop Grumman's vice president of propulsion systems. 'While the motor appeared to perform well through the most harsh environments of the test, we observed an anomaly near the end of the two-plus minute burn.' The test is for a booster that wouldn't fly until at least next decade, and only if NASA sticks with SLS as a rocket option for its Artemis missions. 'As a new design, and the largest segmented solid rocket booster ever built, this test provides us with valuable data to iterate our design for future developments,' Kalberer said. Under the current NASA plan, the first eight Artemis launches use an SLS rocket with boosters that produce 3.4 million pounds of thrust each. The pair, combined with the core stage, created 8.8 million pounds of thrust on the Artemis I launch in 2022, which still is the most powerful rocket to ever make it into orbit. The BOLE version would increase thrust to 4 million pounds each, which would push SLS to near 10 million pounds of thrust on Artemis IX. The Trump administration's proposed budget for NASA, though, wants to kill off the use of the SLS rocket after Artemis III, although Congress is the ultimate decision-maker on what gets funded. So until directed otherwise, contractors continue to work on future versions of the SLS. Northrop Grumman's solid rocket boosters for Artemis are enhanced versions of similar boosters used during the Space Shuttle Program. The BOLE design is a solution to components no longer in production. The update uses a carbon fiber composite case and a different propellant formula among other features. The goal is a 10% increase in booster performance over the boosters used on Artemis I. That would equate to SLS being able to carry another 11,000 pounds of payload to lunar orbit. The nozzle issue was reminiscent of another Northrop Grumman booster problem seen in 2024. SpaceX Crew Dragon with 4 Axiom Space astronauts docks with space station Kennedy Space Center goes retro for Y2K after-hours event SpaceX launches historic mission to space station on new Crew Dragon dubbed 'Grace' Space Coast launch schedule With SLS rocket future uncertain, L3Harris still cranking out engines That's when a nozzle flew off of one of the boosters used on the United Launch Alliance Vulcan Certification-2 mission from Cape Canaveral. That incident contributed to a delay in the Space Force giving ULA the OK to fly national security missions. Northrop Grumman officials, though, said the ULA and Artemis boosters are not directly related. 'It is an entirely separate product,' said Mark Pond, senior director of NASA programs for Northrop Grumman's propulsion systems during an Artemis II media day last December at Kennedy Space Center. Artemis II is slated to launch no later than April 2026 on what would be the first crewed mission sending four astronauts on a trip around the moon, but not landing on it. 'From a concern standpoint, we've met all of our requirements, we've done all of our testing, we've met all of our acceptance tests and our delivery requirements, and for that reason, we are not concerned from an Artemis II perspective,' he said.


New York Times
3 hours ago
- New York Times
In the Quest to Shrink NASA, Trump Forgets National Security
On a crisp evening in December 2023, I received an urgent alert: a swarm of unidentified drones had been detected above Langley Air Force Base in Virginia, inside highly restricted airspace. As NASA administrator at the time, I was immediately concerned. Langley is one of the most sensitive sites in the United States — home to F-22 Raptors, supersonic stealth fighters with highly classified capabilities and NORAD operations. It also happens to neighbor NASA's Langley Research Center, where our experimental technology had spotted the drones. Isolated drone sightings around military bases weren't unheard-of, but nothing like this swarm had ever happened before. I called senior Pentagon officials twice and raised the issue with staff at the National Security Council. I noted it was NASA technology that was able to see the drones, and based on our observations, this activity wasn't random: It's plausible the drones launched from a ship or submarine lurking as little as three miles offshore in international waters, or perhaps from trucks or trailers concealed in nearby woodlands. The incursion by the drones lasted 17 days. To my knowledge, we still do not know their origin or purpose, or how much of a threat they posed. But it was thanks to NASA technology that they were even picked up in the first place. The Air Force base did not have that capability. If a drone incursion could do something like this at Langley, what would stop a determined adversary from launching a flock of spacecraft-downing drones at the Kennedy Space Center and Cape Canaveral Space Force Station? Or Vandenberg Space Force Base in California? Or Wallops Island off Virginia? These aren't just sites for launching rockets into space and delivering NASA payloads into orbit — they're strategic targets vital to the defense of our homeland. The events at Langley underscore how although NASA is a civilian agency for space exploration, its role stretches beyond that. Its study of the environment of space makes it possible for the United States to launch and operate satellites vital for spotting unusual things that NASA calls 'anomalies' and allowing communications across the globe. Its technological advancements have made it possible to develop state-of-the-art rockets and aircraft that few other countries can match. Winning the race to the moon bolstered national prestige and geopolitical dominance that helped the United States win the Cold War. NASA's fleet of Earth observation satellites gives vulnerable communities the information they need to plan for an uncertain future under climate change. And its scientific research into the furthest reaches of the solar system and beyond opens our eyes to the awesome nature of the universe, reminding us of our shared humanity. Want all of The Times? Subscribe.