logo
Uncontrolled Movements, Anger, and Insomnia

Uncontrolled Movements, Anger, and Insomnia

Medscape3 days ago
Editor's Note:
The Case Challenge series includes difficult-to-diagnose conditions, some of which are not frequently encountered by most clinicians, but are nonetheless important to accurately recognize. Test your diagnostic and treatment skills using the following patient scenario and corresponding questions. If you have a case that you would like to suggest for a future Case Challenge, please email us at ccsuggestions@medscape.com with the subject line "Case Challenge Suggestion." We look forward to hearing from you.
Background
A 35-year-old man presents to the neurology clinic due to abnormal movements over the past 6 years. The involuntary movements began in the right upper limb, followed sequentially by the left upper limb, left lower limb, and finally the head and neck. The movements occur during wakefulness and are absent in sleep. They are described as jerky and nonpurposeful. His gait has assumed a dancelike character. He also has had behavioral changes that include frequent outbursts of anger, aggressive behavior, depressive mood, and insomnia. His abnormal movements are aggravated during outbursts of anger and disturbances in mood.
He has no weakness in any limbs but is unable to perform regular household activities. Family members have also noted memory impairment. He has been unable to continue his work as a machine operator for the past 3 months.
He has no history of psychoactive drug intake, including phenytoin, phenothiazines, haloperidol, L-dopa, lithium, isoniazid, amphetamines, tricyclic antidepressants, or any other relevant drugs. He reports no history of chest pain, breathlessness, or joint pain. His family history includes a paternal grandfather and father who had similar forms of abnormal movements and died at the age of 60 years and 55 years, respectively.
The patient has five siblings (two brothers, three sisters). His elder brother died by suicide at age 25 years, and his elder sister died at age 33 years. Both had abnormal movements and abnormal behaviors. One of his younger sisters (age 22 years) also has similar abnormal movements and depressed attitude. His younger brother (age 17 years) and other younger sister (age 14 years) are healthy and symptom-free. The patient's children, an 8-year-old son and a 10-year-old daughter, are symptom-free.
His past medical history is positive for hypertension, which is well controlled with lisinopril (20 mg daily). He has no surgical history. He does not smoke, drink, or use recreational drugs.
Physical Examination and Workup
A general examination reveals a pleasant man who is well built and in no acute distress. His blood pressure is 140/80 mm Hg, his heart rate is 78 beats/min, his respiratory rate is 12 breaths/min, his SpO 2 level is 98% on room air, and his body mass index (BMI) is 20. He is afebrile.
A cardiovascular examination reveals normal peripheral pulses and normal heart findings. A chest examination reveals normal auscultation and expansion. His abdomen is soft. Head, eyes, ears, nose, and throat (HEENT) examination findings are unremarkable. He does not have a skin rash. A visual examination reveals normal acuity, field, and fundi.
His affect is flat. A neurologic examination of the higher mental functions reveals that the patient is awake and alert, with normal orientation, attention, concentration, fund of knowledge, and language function. His memory is impaired, with recall one-third at 3 minutes. He has a normal past memory. His speech is normal. A cranial nerve examination reveals normal extraocular movements, increased blink rate, normal facial sensation, a symmetric face with abnormal fidgety movement, normal hearing, and normal palate movement. He has abnormal tongue movement and cannot protrude his tongue more than 20 seconds (darting tongue movement). He has normal shoulder shrug. No Kayser-Fleischer ring is noted during slit-lamp examination.
An examination of the motor system reveals decreased muscle tone, normal bulk, and 5/5 strength in both upper and lower extremities. No atrophy or fasciculation is noted. Deep tendon reflexes are normal (2+ with flexor planters). Sensory examination findings are normal. Finger-nose test findings are normal. An examination of the extrapyramidal system reveals reduced tone and involuntary choreoathetoid movements that affect both upper and lower extremities as well as his face. He has a dancing gait.
Diagnostic tests reveal normal complete blood cell count (CBC) and comprehensive metabolic panel findings. He has normal serum findings and urine copper levels. His erythrocyte sedimentation rate (ESR) is 22 mm/hr (reference range, 0-22 mm/hr). He has normal ECG findings, a normal thyroid-stimulating hormone (TSH) level, a normal transthoracic echo (with ejection fraction 65%), and normal chest radiography findings.
Brain MRI can be used to evaluate for selective atrophy of deep gray structures, to document disease burden, and to provide a baseline for future comparison. Whole-body 18-FDG PET/CT may be used to screen for occult neoplasm and paraneoplastic chorea, but this is exceedingly rare and typically subacute. NMDA receptor antibody panel may be used to investigate for autoimmune encephalitic chorea, but the features of this (ie, seizures, psychosis, and autonomic instability) are absent in this case. RPR and FTA-ABS may be used to evaluate for neurosyphilitic chorea, but this is also very uncommon and unnecessary without risk factors or acute symptoms.
In this patient, brain MRI reveals evidence of bilateral caudate atrophy, with increased intercaudate distance (Figure).
Figure.
Cerebrospinal fluid (CSF) examination findings are normal.
Discussion
This 35-year-old man has Huntington disease. He has insidious-onset, slowly progressive movement disorder, and movements are absent during sleep. His movements are described as choreoathetoid. He has family history that suggests autosomal dominant transmission. Apart from the movement disorder, he also has neuropsychiatric manifestations, with death at an early age in the family. A CT scan of the head revealed evidence of caudate nucleus atrophy. Brain MRI revealed evidence of caudate atrophy (Figure).
Figure.
In evaluating the differential diagnoses, the patient has no history of antipsychotic medication use to suggest tardive dyskinesia. He has no clinical or diagnostic evidence of infection or heart involvement, which makes Sydenham chorea unlikely. No acanthocytes were observed, helping to exclude neuroacanthocytosis. The strong family history of progressive abnormal movements and neuropsychiatric symptoms across generations supports a genetic etiology, specifically autosomal-dominant Huntington disease.
Huntington disease is a rare neurodegenerative disorder of the central nervous system (CNS) characterized by choreiform movements, behavioral and psychiatric disturbances, and dementia.[1] Huntington disease is caused by an autosomal-dominantly inherited expansion of CAG trinucleotide repeats in the huntingtin ( HTT ) gene on chromosome 4; this leads to production of a mutant huntingtin (mHTT) protein, with an abnormally long polyglutamine repeat.[2] Individuals with more than 39 CAG repeats develop the disease, whereas reduced penetrance is seen in those with 36-39 CAG repeats. The disease can be anticipated when the gene is passed down the paternal line, as in this case; a father with a CAG repeat length in the intermediate range may have a child with an expanded pathogenic repeat length. This is because sperm from males shows greater repeat variability and larger repeat sizes than somatic tissues. Mutant huntingtin protein leads to death and neuronal dysfunction through various mechanisms. Postmortem studies reveal diffuse atrophy of the caudate and putamen. The progressive worsening of Huntington disease leads to a bedridden state with cognitive deterioration, and death typically occurs about 20 years after the onset of symptoms.[3]
Prevalence in the white population is estimated at 1 in 10,000 to 1 in 20,000. The mean age at symptom onset is 30-50 years. In some cases, symptoms begin before age 20 years, with behavior disturbances and learning difficulties at school; this is termed juvenile Huntington disease (Westphal disease).[4] The first description, by Waters, dates to 1842. However, after a description in 1872 by George Huntington, it became known as Huntington chorea. In 1983, a linkage on chromosome 4 was established, and in 1993 the gene for Huntington disease was found.[1]
Diagnosis of Huntington disease is confirmed by demonstration of autosomal dominant transmission or gene testing in the presence of clinical features.[5]
The clinical features of Huntington disease consist of motor, cognitive, and neuropsychiatric manifestations. Huntington disease has a biphasic course of hyperkinetic phase with chorea in the early stages of disease that then plateaus into a hypokinetic phase, consisting of bradykinesia dystonia, balance issues, and gait disturbance. The younger-onset variant is associated with predominant bradykinesia.[6] Cognitive disturbance can be seen many years before other symptom onset and is characterized by impaired emotion recognition, processing speed, and executive function abnormality. Neuropsychiatric symptoms widely vary, including apathy, anxiety, irritability, depression, obsessive-compulsive behavior, and psychosis. A lack of awareness of early and progressing behavioral, cognitive, and motor symptoms is a hallmark of Huntington disease. This unawareness is caused by the disease itself (specifically, impaired insight or anosognosia) and is not the result of intentional denial, avoidance, or suppression of symptoms.[7] Therefore, a comprehensive history, including information from a knowledgeable family member/caregiver, is advisable.[7]
Numerous conditions can mimic Huntington disease, including a spinal cerebellar ataxia 17, spinocerebellar ataxia 1-3, and Friedreich ataxia, which involve neuropathy. If seizures are also present, dentatorubropallidoluysian atrophy should be considered. Acanthocytes are seen in patients with neuroacanthocytosis.[8-10] Isolated chorea can be seen in acquired conditions, including chorea gravidarum, systemic lupus erythematosus, antiphospholipid syndrome, thyrotoxicosis, postinfectious syndromes, polycythemia vera, and some drug use.
Genetic testing for the mHTT mutation can be either diagnostic or predictive.[6] A diagnostic test may be performed when a patient presents with typical motor features of Huntington disease. Prior to testing, the patient should be informed about Huntington disease and its hereditary nature, as a positive test result has implications for the patient and family. Predictive testing is performed in asymptomatic patients, mostly for reproductive reasons.
Treatment of Huntington Disease
The optimal management of Huntington disease involves a multidisciplinary approach that includes neurology, nurses, physical therapy, speech-language pathology, and dietitians and other healthcare professionals. The goal is to optimize the quality of life based on the changing need of the patient. These consist of combined pharmacologic and lifestyle changes, including behavioral therapy. Symptoms may be worsened by stress, fatigue, and intercurrent disorders (eg, anxiety, digestive disorders, infectious or painful conditions), so these aspects must be assessed and treated alongside the primary symptoms of Huntington disease.[3]
In clinical practice, information about symptoms should be obtained from both the patient and caregivers, since patients may have impaired awareness of their condition.[11] Identifying coexisting psychiatric symptoms, comorbid medical conditions, and environmental factors is crucial.[11] Educating caregivers about the nature and presentation of symptoms and methods to modify triggers is also vital.[11] Medication choices should be guided by coexisting symptoms and disease stage, and regular reassessment of drug need and potential for dose reduction is important because of adverse effects that can mimic disease progression.[11]
Nonpharmacologic interventions, including behavioral therapies and environmental modifications, should be prioritized for neuropsychiatric symptoms in Huntington disease. Pharmacologic agents may be considered if these measures are insufficient, and consultation with a psychiatrist knowledgeable in Huntington disease is recommended for individuals whose symptoms are resistant to standard pharmacologic therapy.[11]
Tetrabenazine and its modified version, deutetrabenazine, are commonly used to treat choreiform movements. Side effects of tetrabenazine can include depression, anxiety, sedation, sleep problems, restlessness, and parkinsonism.[7] Citalopram is a selective serotonin reuptake inhibitor used to manage depression. Modafinil and atomoxetine are used to manage apathy. Tiapride, although unavailable in the United States, is considered a first-line treatment option for chorea outside the United States.[7] Other antipsychotics such as olanzapine, risperidone, and quetiapine are also used to manage chorea. Risperidone may also help with psychomotor restlessness, and olanzapine and quetiapine can have additional benefits like weight gain (which can be desirable in Huntington disease) and mood stabilization. Haloperidol has also shown effectiveness.[7] Medications used to suppress chorea (eg, tetrabenazine and deutetrabenazine and certain antipsychotics) should be used sparingly and mainly for subjectively disabling hyperkinesias, starting at low doses and titrating gradually. They make take 4-6 weeks to show results.[7] The choice of medication depends on the individual patient's symptoms, tolerability, and co-existing conditions.[7]
Evidence regarding the treatment of psychiatric symptoms in Huntington disease is limited, with recommendations often based on expert opinion owing to a lack of robust controlled studies.[7,11] Nonpharmacologic interventions such as cognitive-behavioral therapy and psychodynamic therapy are recommended, especially for depression, anxiety, obsessive-compulsive behaviors, and irritability. Behavioral strategies (eg, structured routines and distraction) are important for managing irritability and agitation.[3,11]
Depression: Selective serotonin reuptake inhibitors (SSRIs) such as citalopram, fluoxetine, paroxetine, sertraline, and venlafaxine are recommended as pharmacologic options. [3,7] Mianserin (unavailable in the United States) or mirtazapine are alternatives, particularly in patients with sleep disruption. [3,7,11] Electroconvulsive therapy (ECT) may be considered for severe or resistant cases, although it can significantly impair short-term memory. [3,7]
Mianserin (unavailable in the United States) or mirtazapine are alternatives, particularly in patients with sleep disruption. Electroconvulsive therapy (ECT) may be considered for severe or resistant cases, although it can significantly impair short-term memory. Anxiety: SSRIs or serotonin-noradrenaline reuptake inhibitors (SNRIs) are first-line treatments, especially when anxiety coexists with depression. [3,11] Mirtazapine is an option in patients with sleep disorders. [11] Long-term use of benzodiazepines is generally discouraged for ambulatory individuals because of the risk of falls and dependence but can be used short-term or as needed. [3,11]
Mirtazapine is an option in patients with sleep disorders. Long-term use of benzodiazepines is generally discouraged for ambulatory individuals because of the risk of falls and dependence but can be used short-term or as needed. Obsessive-compulsive behaviors/perseverations: For true obsessive-compulsive phenomena, SSRIs are considered first-line treatment. [3] Olanzapine and risperidone may also be valuable for ideational perseverations, particularly if associated with irritability. [3] Clomipramine is an option, especially if needed for coexisting obsessive perseverative behaviors. [11]
Olanzapine and risperidone may also be valuable for ideational perseverations, particularly if associated with irritability. Clomipramine is an option, especially if needed for coexisting obsessive perseverative behaviors. Irritability and aggression: SSRIs are a first-line treatment. [3] For aggressive behavior, neuroleptics are recommended. [3,7] Mood stabilizers (eg, valproate, lamotrigine, lithium, carbamazepine) can be added if irritability is resistant to other treatments or for mood lability. Risperidone and olanzapine may help reduce irritability. [3,7]
For aggressive behavior, neuroleptics are recommended. Mood stabilizers (eg, valproate, lamotrigine, lithium, carbamazepine) can be added if irritability is resistant to other treatments or for mood lability. Risperidone and olanzapine may help reduce irritability. Psychosis (hallucinations/delusions): Second-generation neuroleptics (antipsychotics) are the first-line pharmacologic treatment. [3,7,11] Options include olanzapine, risperidone, quetiapine, aripiprazole, and haloperidol. [7] Clozapine may be considered for severe or resistant cases, particularly in akinetic forms of Huntington disease but requires regular monitoring. [3,7,11] Underlying causes, such as the use of psychotropic agents or somatic triggers, should be investigated and addressed. [3,11]
Options include olanzapine, risperidone, quetiapine, aripiprazole, and haloperidol. Clozapine may be considered for severe or resistant cases, particularly in akinetic forms of Huntington disease but requires regular monitoring. Underlying causes, such as the use of psychotropic agents or somatic triggers, should be investigated and addressed. Apathy: Personalized cognitive stimulation and structured routines and activities are recommended.[3,7,11] If depression is suspected as a contributor, an SSRI should be tried.[3,11] In patients without depression, activating antidepressants or stimulant drugs (eg, methylphenidate, atomoxetine, modafinil) may be considered.[11] Sedative medications may increase apathy, so their dosage should be monitored or reduced.[3,11]
Currently, no pharmacological treatment is specifically recommended for cognitive symptoms in Huntington disease.[3,7] Rehabilitation strategies, including speech therapy, occupational therapy, cognitive and psychomotor therapy, may help transiently improve or stabilize cognitive functions.[3,7] Coping strategies can be useful as an alternative to medication. Certain medications, such as sedative drugs, neuroleptics, and tetrabenazine, can negatively affect memory, executive functions, and attention.[3]
Apart from symptomatic treatment, pharmacologic agents have failed to show benefit in clinical trials as disease-modifying agents. The most promising approaches in regard to disease modification are emerging therapies aimed at lowering levels of mHTT by targeting either the DNA or RNA of the mHTT gene.[12] RNA-targeting using antisense oligonucleotides (ASOs) have shown disappointing results in clinical trials. This has shifted significant research focus and toward orally available small molecules that modify HTT mRNA splicing, thereby reducing mHTT protein production. DNA-targeting approaches using gene editing tools like CRISPR/Cas9, while demonstrating success in preclinical models, remain in the early stages of development.[13,14]
The patient in this case was diagnosed with Huntington disease with CAG repeat 78. He was started on tetrabenazine for abnormal movements and citalopram for depression. He opted to apply for federal disability. His children are asymptomatic, and the family decided not to investigate until symptoms develop or they are age 18 years.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Sarepta Therapeutics Provides Clarifying Statement on ELEVIDYS
Sarepta Therapeutics Provides Clarifying Statement on ELEVIDYS

Yahoo

time5 hours ago

  • Yahoo

Sarepta Therapeutics Provides Clarifying Statement on ELEVIDYS

CAMBRIDGE, Mass., July 25, 2025--(BUSINESS WIRE)--Sarepta Therapeutics, Inc. (NASDAQ:SRPT), the leader in precision genetic medicine for rare diseases, today issued the following statement: Just before 6:00 p.m. ET today, the U.S. Food and Drug Administration (FDA) issued a press release announcing an investigation into the death of an eight-year-old Duchenne muscular dystrophy (Duchenne) patient who had received ELEVIDYS (delandistrogene moxeparvovec) gene therapy. The death of this patient was deemed unrelated to treatment with ELEVIDYS. As reported yesterday by Naomi Kresge at Bloomberg News: Roche Holding AG says the recent death of a patient in Brazil who had been treated with gene therapy Elevidys for Duchenne muscular dystrophy is unrelated to the treatment. * The boy wasn't a clinical trial participant; reporting physician assessed his death as being unrelated to the gene therapy, Roche says in statement* Death was reported to health authorities* Roche, which markets Sarepta's Duchenne treatment Elevidys outside the US, declines to comment on the boy's age or details of the case Sarepta reported this event to FDA on June 18, 2025, via the FDA's postmarketing electronic database, FAERS. At Sarepta, patient safety and well-being are always our top priority. We are committed to upholding the highest safety standards for all of our therapies, and do so in accordance with applicable law and commitment to full regulatory transparency. ELEVIDYS is the only approved gene therapy for families and children devastated by Duchenne, a rare, progressive and ultimately fatal disease. We remain committed to working closely with the FDA to ensure that all decisions are grounded in science and the best interests of patients, considering the compelling need of these families to access disease-modifying therapy. About ELEVIDYS (delandistrogene moxeparvovec-rokl)ELEVIDYS (delandistrogene moxeparvovec-rokl) is a single-dose, adeno-associated virus (AAV)-based gene transfer therapy for intravenous infusion designed to address the underlying genetic cause of Duchenne muscular dystrophy – mutations or changes in the DMD gene that result in the lack of dystrophin protein – through the delivery of a transgene that codes for the targeted production of ELEVIDYS micro-dystrophin in skeletal muscle. ELEVIDYS is indicated for the treatment of Duchenne muscular dystrophy (DMD) in individuals at least 4 years of age. For patients who are ambulatory and have a confirmed mutation in the DMD gene For patients who are non-ambulatory and have a confirmed mutation in the DMD gene. The DMD indication in non-ambulatory patients is approved under accelerated approval based on expression of ELEVIDYS micro-dystrophin in skeletal muscle. Continued approval for this indication may be contingent upon verification and description of clinical benefit in a confirmatory trial(s). IMPORTANT SAFETY INFORMATION CONTRAINDICATION: ELEVIDYS is contraindicated in patients with any deletion in exon 8 and/or exon 9 in the DMD gene. WARNINGS AND PRECAUTIONS:Infusion-related Reactions: Infusion-related reactions, including hypersensitivity reactions and anaphylaxis, have occurred during or up to several hours following ELEVIDYS administration. Closely monitor patients during administration and for at least 3 hours after the end of infusion. If symptoms of infusion-related reactions occur, slow, or stop the infusion and give appropriate treatment. Once symptoms resolve, the infusion may be restarted at a lower rate. ELEVIDYS should be administered in a setting where treatment for infusion-related reactions is immediately available. Discontinue infusion for anaphylaxis. Acute Serious Liver Injury: Acute serious liver injury has been observed with ELEVIDYS, and administration may result in elevations of liver enzymes (such as GGT, GLDH, ALT, AST) or total bilirubin, typically seen within 8 weeks. Patients with preexisting liver impairment, chronic hepatic condition, or acute liver disease (e.g., acute hepatic viral infection) may be at higher risk of acute serious liver injury. Postpone ELEVIDYS administration in patients with acute liver disease until resolved or controlled. Prior to ELEVIDYS administration, perform liver enzyme test and monitor liver function (clinical exam, GGT, and total bilirubin) weekly for the first 3 months following ELEVIDYS infusion. Continue monitoring if clinically indicated, until results are unremarkable (normal clinical exam, GGT, and total bilirubin levels return to near baseline levels). Systemic corticosteroid treatment is recommended for patients before and after ELEVIDYS infusion. Adjust corticosteroid regimen when indicated. If acute serious liver injury is suspected, consultation with a specialist is recommended. Immune-mediated Myositis: In clinical trials, immune-mediated myositis has been observed approximately 1 month following ELEVIDYS infusion in patients with deletion mutations involving exon 8 and/or exon 9 in the DMD gene. Symptoms of severe muscle weakness, including dysphagia, dyspnea, and hypophonia, were observed. Limited data are available for ELEVIDYS treatment in patients with mutations in the DMD gene in exons 1 to 17 and/or exons 59 to 71. Patients with deletions in these regions may be at risk for a severe immune-mediated myositis reaction. Advise patients to contact a physician immediately if they experience any unexplained increased muscle pain, tenderness, or weakness, including dysphagia, dyspnea, or hypophonia, as these may be symptoms of myositis. Consider additional immunomodulatory treatment (immunosuppressants [e.g., calcineurin-inhibitor] in addition to corticosteroids) based on patient's clinical presentation and medical history if these symptoms occur. Myocarditis: Acute serious myocarditis and troponin-I elevations have been observed following ELEVIDYS infusion in clinical trials. If a patient experiences myocarditis, those with pre-existing left ventricle ejection fraction (LVEF) impairment may be at higher risk of adverse outcomes. Monitor troponin-I before ELEVIDYS infusion and weekly for the first month following infusion and continue monitoring if clinically indicated. More frequent monitoring may be warranted in the presence of cardiac symptoms, such as chest pain or shortness of breath. Advise patients to contact a physician immediately if they experience cardiac symptoms. Preexisting Immunity against AAVrh74: In AAV-vector based gene therapies, preexisting anti-AAV antibodies may impede transgene expression at desired therapeutic levels. Following treatment with ELEVIDYS, all patients developed anti-AAVrh74 antibodies. Perform baseline testing for presence of anti-AAVrh74 total binding antibodies prior to ELEVIDYS administration. ELEVIDYS administration is not recommended in patients with elevated anti-AAVrh74 total binding antibody titers greater than or equal to 1:400. Adverse Reactions: The most common adverse reactions (incidence ≥5%) reported in clinical studies were vomiting, nausea, liver injury, pyrexia, and thrombocytopenia. Report negative side effects of prescription drugs to the FDA. Visit or call 1-800-FDA-1088. You may also report side effects to Sarepta Therapeutics at 1-888-SAREPTA (1-888-727-3782). For further information, please see the full Prescribing Information. About Sarepta TherapeuticsSarepta is on an urgent mission: engineer precision genetic medicine for rare diseases that devastate lives and cut futures short. We hold a leadership position in Duchenne muscular dystrophy (Duchenne) and are building a robust portfolio of programs across muscle, central nervous system, and cardiac diseases. For more information, please visit or follow us on LinkedIn, X, Instagram and Facebook. Forward-Looking StatementsThis statement contains "forward-looking statements." Any statements that are not statements of historical fact may be deemed to be forward-looking statements. Words such as "believe," "anticipate," "plan," "expect," "will," "may," "intend," "prepare," "look," "potential," "possible" and similar expressions are intended to identify forward-looking statements. These forward-looking statements include, without limitation, statements relating to our future operations, research and development programs, clinical trials and ELEVIDYS. Actual results could materially differ from those stated or implied by these forward-looking statements as a result of such risks and uncertainties. Known risk factors include the following: our products or product candidates may be perceived as insufficiently effective, unsafe or may result in unforeseen adverse events; our products or product candidates may cause undesirable side effects that result in significant negative consequences following any marketing approval; the possible impact of regulations and regulatory decisions by the FDA and other regulatory agencies on our business; and those risks identified under the heading "Risk Factors" in our most recent Quarterly Report on Form 10-Q filed with the Securities and Exchange Commission (SEC) as well as other SEC filings made by the Company, which you are encouraged to review. Any of the foregoing risks could materially and adversely affect the Company's business, results of operations and the trading price of Sarepta's common stock. For a detailed description of risks and uncertainties Sarepta faces, you are encouraged to review the SEC filings made by Sarepta. We caution investors not to place considerable reliance on the forward-looking statements contained herein. Sarepta does not undertake any obligation to publicly update its forward-looking statements based on events or circumstances after the date hereof, except as required by law. Internet Posting of InformationWe routinely post information that may be important to investors in the 'For Investors' section of our website at We encourage investors and potential investors to consult our website regularly for important information about us. Source: Sarepta Therapeutics, Inc. View source version on Contacts Investor Contact: Ian Estepan617-274-4052iestepan@ Media Contacts: Tracy Sorrentino617-301-8566tsorrentino@ Error in retrieving data Sign in to access your portfolio Error in retrieving data Error in retrieving data Error in retrieving data Error in retrieving data

Jul 25 2025 This Week in Cardiology
Jul 25 2025 This Week in Cardiology

Medscape

time10 hours ago

  • Medscape

Jul 25 2025 This Week in Cardiology

Please note that the text below is not a full transcript and has not been copyedited. For more insight and commentary on these stories, subscribe to the This Week in Cardiology podcast , download the Medscape app or subscribe on Apple Podcasts, Spotify, or your preferred podcast provider. This podcast is intended for healthcare professionals only. In This Week's Podcast For the week ending July 25, 2025, John Mandrola, MD, comments on the following topics: The group at the University of Leeds in the UK have published an interesting paper on endurance athletes, cardiac fibrosis, and ventricular arrhythmia. They cheekily named it Ventoux to correspond to a recent Tour de France stage finishing on Mount Ventoux. I've climbed Ventoux. It took me 1 hour 42 minutes. Tadej and Jonas did it this week in 54 minutes—a record by a minute. Imagine liking, no, loving, the notion of climbing a 10% gradient for well more than hour and you will understand the mindset of older endurance athletes. Thinking this is fun is a sort of disease. People who do this day in and day out for decades have an affliction. I know because I do. We are like rodents who, given a wheel in our cage, will run on it, for no purpose other than to run on it. Before I say anything else, I want to start with the fact that exercise is one of the pillars of health. It's in every expert consensus document and oodles of observational studies correlate exercise with longevity. But 60-year-old people who cycle or run more than 10 hours per week for decades are not normal exercisers. For instance, if you do an hour ride 5 days per week, to get to that level of exercise, you have to do a 5-hour ride on the weekend or two 3-hour rides on Saturday and Sunday. That's a lot. I co-wrote a book called The Haywire Heart in which my chapters were basically narrative reviews of the cardiac effects of all this exercise. The one, single observation that got me interested in this topic is that endurance athletes have a heightened relative risk of getting atrial fibrillation (AF) and, electrically and structurally, their atria remodeling resembles that of a person of obesity and hypertension. Isn't that wild? But AF is not the topic of this paper. Endurance athletes can also develop both myocardial fibrosis (scar) and ventricular arrhythmias (VA). The VA story is less fleshed out than the AF story, perhaps because it is less common. But again, you have the paradox: endurance exercise correlates with scar seen in healed myocarditis and other cardiomyopathies. Something amazing for health — regular exercise — perhaps can be detrimental in huge doses. And we all know that myocardial scar can predispose to ventricular arrhythmias—which, can in rare cases, lead to sudden cardiac death. Now to the Ventoux study: The Leeds group recruited about 100 endurance athletes and 27 controls with the purpose of studying MRI, CMR, and monitoring for VA with implantable loop recorders (ILRs) over 2 years. All participants had to agree to an ILR implant, which is likely an important factor in the study's interpretation. This study is a great effort. I congratulate the authors. The average age was about 60. All were men. None could have any symptoms or heart disease. The athletes were pretty strong. The functional threshold power, what can be held for an hour, was around 244 watts. That's not close to elite but it's not Mickey Mouse either. Another factor was that the Leeds group is a well-known and experienced in imaging. So, the MRI imaging can be trusted, and an expert in imaging told me these are likely real findings. And here are the topline results: Nearly half (47%) had myocardial fibrosis on MRI, the vast majority had inferior lateral location of scar. The main way the authors display the results is with two groups—those with scar and those without scar. About 1in 5 athletes overall had some ventricular arrythmia on the ILR during 2 years of follow-up Those with fibrosis had a 4.7% higher relative risk of VA. (But crucially, the 95% CI were wide from 80% higher risk to 13x higher). Athletes with fibrosis were slightly older than athletes without fibrosis (62 years versus 57 years) Athletes with fibrosis exhibited a greater prevalence of premature ventricular contractions (PVC) during exercise testing than athletes without fibrosis (71% vs 42%; P =.003) All three of the athletes with VT longer than 30 seconds, which we call sustained VT, had fibrosis on cardiac MRI. And all 3 who experienced sustained VT were symptomatic and developed an episode of nonsustained VT before the onset of VT. One athlete received an ICD due to presyncope, one was scheduled for an EP study (the results of which were not known), and the third was advised to cease competing due to recurrent VT during exercise but declined further investigation Of those who experienced a ventricular arrhythmia, 78% of the athletes had myocardial fibrosis on CMR compared with 22% athletes who did not ( P < .001). Two other predictors of having VT were left ventricular (LV) dilation and exercise-induced PVCs. Late gadolinium enhancement (LGE) at the right ventricular (RV) insertion point was super common. This is also well known in athletes but it had no statistically significant correlation with VA. But confidence intervals (CI) were wide again. Both groups had normal left ventricular ejection fraction (LVEF). Both had similar and normal RV function. There were no significant differences in T2 times between athletes with and without ventricular arrhythmia. No athlete had T2 values indicative of acute myocardial edema, and no athlete fulfilled Lake Louise Criteria for acute myocarditis. The authors concluded that fibrosis incidence was high and associated with VA, and RV insertion point LGE was not associated with VA and…sit down for this conclusion: 'Further studies are needed to establish whether myocardial fibrosis itself is arrhythmogenic or in the case of athlete's indicative of a myopathic process.' I like this conclusion, and it's different from many of the posts I have seen on social media—which go too far in scaring people about exercise. There is much to say about these observations, but, sadly, most are questions rather than answers. First: Why was the fibrosis presence so high? Almost half of people. I think the issue here is a systemic bias in this study: it's a selection bias. Or more specifically , self-selection . A researcher who does a lot of normal volunteer studies told me that, after the fact, many asymptomatic volunteers admit to symptoms they wanted checked. Now…Recall this study was done in the UK, where getting checked out may not be so easy. So you enroll 100 people who have to agree to get ILRs. To me this is a special population, who are probably more than just curious; they are probably concerned. Endurance athletes tend to be obsessive and read a lot about the heart issues in athletes. I would almost consider getting an ILR a collider bias. You are not looking at a general population of endurance exercisers but rather those endurance exercisers interested in monitoring for some reason. Second issue: There is the issue of ILR monitoring . These things are always on. They, like pacemakers, pick up everything . They are far more sensitive than a 2-week ECG or even an Apple Watch. So you have a population enhanced by concern wearing a monitor that misses nothing. In my device clinic, I probably get three nonsustained VT alerts per day — 99% of which I say, just follow. I've become increasingly convinced that short episodes of atrial and ventricular tachycardia are probably normal in older adults. Indeed, in VENTOUX, only 3 of the 100 individuals had symptoms that required clinical action—an ICD, an EP study, results unknown, and an exercise restriction. All three were symptomatic, so clinically, I agree 100% with the authors, that there is nothing in this data that would suggest screening with MRIs and ILRs. Let me repeat: VENTOUX does not support screening athletes with MRI. You can and should wait for symptoms. The third matter is the degree of LGE. The scar burden was only 2%. These are tiny scars, and most serious VT we take care of in EP comes from much larger scars. But while it is true that any scar is abnormal, we don't know if it is from exercise or healed myocarditis. And we don't know the benefit/harm ratio of lifelong exercise. Lifelong exercise is protective against diabetes, hypertension, coronary artery disease (CAD), but it may cause small LGEs in a very small proportions of patients. Notice that all these are comments are questions. This study is interesting. Intensely interesting. It's a great effort, but to offer more actionable results, beyond, don't ignore symptoms , which is an easy thing to tell people, we would need larger samples that were crucially more random in sampling. Though they tried, VENTOUX is not all a random sampling of heavy exercisers. Imagine a study wherein you went to an endurance race, and you signed up one out of every five 30-year-olds and followed them serially, as they did in Framingham, with CMR every 5 years for two or three decades. Then we might know more. But such a study is vast and super expensive. For now, I recommend regular exercise as if it was a heart pill or AF pill. You take it daily. Todos los dias. The vast majority of people I see don't exercise enough. What bike racers like to do is not at all for health . It is for fun, or for sanity; whether it is a net harm remains to be seen. But even if it were, I am not sure most of us would stop doing it. Because rodents must run on the wheel. An Australian group of researchers have published a massive systematic review and meta-analysis of daily steps in and health. Lancet Public Health published the study, which was covered in 176 news outlets as of this morning. Most of the news stories say something like the 10,000-step myth has been busted and 7000 is sufficient. The news' stories are wrong. And I will briefly cover this study because it bookends the extreme exercise study quite well. The research team had 57 studies from 35 cohorts included in the systematic review and 31 studies from 24 cohorts included in meta-analyses. They looked at dose response (in steps) and many outcomes including all-cause mortality, cardiovascular disease incidence, dementia, falls, and type 2 diabetes. The comparator or control group was 2000 steps. Compared to that those who reported or documented with counter 7000 steps per day had a: 47% reduction in all-cause death (HR 0.53 [95% CI, 0.46–0.60]; I 2 =36.3; 14 studies) 25% reduction in CV disease incidence (HR 0·75 [0·67–0·85]; I 2 =38·3%; 6 studies) 47% reduction in CV mortality (HR 0·53 [0·37–0·77]; I 2 =78·2%; 3 studies) 37% reduction in cancer mortality (HR 0·63 [0·55–0·72]; I 2 =64·5%; 3 studies) 14% reduction type 2 diabetes (HR 0·86 [0·74–0·99]; I 2 =48·5%; 4 studies) 38% reduction in dementia (HR 0·62 [0·53–0·73]; I 2 =0%; 2 studies) 28% reduction in falls (HR 0·72 [0·65–0·81]; I 2=47·5%; four studies) My issue with this study is that when you go to the main figure, the plots with hazard ratio (HR) on the y-axis and step counts on the x-axis, you see a clear dose response of steps and specific outcomes. 2000 steps is where the HR is 0. If it's less than 2000 steps, the outcomes are actually higher, but as the step count increases the HR drops. The authors pick 7000, I assume because that is where the slope of benefit seems to plateau, but when you look at the curves, the HR keeps dropping with more steps. The authors quantify the added benefit of > 7000 steps per day in Table 8 of the supplement. For all-cause death, there is an added 10% lower HR with 10,000 vs 7000. Same for cancer mortality and depressive symptoms—an added 10% lower relative risk. So I don't think any myths were busted. 7000 is fine. 7000 steps per day is associated with lower bad health outcomes. But for many, including all-cause death, 10,000 is better. The added benefits reached statistical significance. So if a patient asks, the number is still 10,000. Though 7000 is also good. And 5000 is better than 4000, which is better than 3000. After reviewing this study, the thought about European vs American life popped into my head. We have probably 2000 people working at my hospital. Less than 5 of them walk to work; less than 10 of them ride their bike. When I visited the team at Basel, Switzerland last fall, it looked like more than 75% walked or cycled to work. Very few American cities are set up for walking. That's sad. So Americans have to make an effort to be active. I think it's worth it. And I recommend it in the clinic. For my height, 7000 steps is about 3 miles. 10,000 steps is nearly 5 miles. The optimal dose is the longer one. But some is better than none. Everyone Deserves a Shot at the American Dream: Sinus Rhythm Let me say a few words here about rate vs rhythm control, because this may actually be the number one issue in all of electrophysiology. The stimulus for writing such a review piece I think comes from the PRAGUE 25 trial of lifestyle modification vs AF ablation. I have opined on that in my July 11 podcast. In sum, AF ablation led to less AF than risk factor (RF) modification alone, though 35% (or 1 in 3 patients) in the risk factor modification group had sinus rhythm (SR) without ablation. And RF modification led to more weight loss, better glycemic control, and better fitness as measured by VO 2 max. PRAGUE 25 also found no statistical differences in AF burden nor quality of life measures. The sits in the literature as a 'positive' ablation trial, but I actually think, healthwise, it is a 'positive' trial for RF modification. The Medscape article cites a 'hybrid' approach wherein all patients who pursue rhythm control also get risk factor modification, which I totally agree with, and I have to say, is underused, at least in my zip code. The absolute wrong thing to do is ablate the AF and not help the patient lose weight and improve cardiometabolic health. Because if you do this, you have merely reduced a surrogate marker — AF episodes. Health is not improved if obesity, hypertension, diabetes, and poor exercise tolerance remain. You succeed as a proceduralist but fail as a doctor in this scenario. The Medscape article goes on to celebrate the benefits of SR over AF. The next logical step is to laud rhythm control over rate control. And here I have a problem. And I somewhat disagree with friend and colleague Eric Prystowsky, MD. Eric is well known for his criticism of AFFIRM and how that trial set EP back years. But I had the pleasure of speaking in Calgary and met the late Dr. George Wyse, the principal investigator of AFFIRM. AFFIRM is one of those landmark trials that deserves your attention. Published in 2002, a total of 4060 patients with AF were randomized to rate or rhythm control. Mortality was the primary endpoint. Patients in AFFIRM were like those we see every day. 70 years old. Most with hypertension, a third with CAD. At 5 years, 23.8% in the rhythm control arm died vs 21.3% in the rate control arm. The HR was 1.15, or 15% worse for rhythm control. CIs were 0.99-1.34 so the P value for arm was just outside 0.05 but the upper bound or worse case was a 34% higher rate of death in the rhythm control arm. More patients in the rhythm-control group than in the rate-control group were hospitalized, and there were more adverse drug effects in the rhythm-control group as well. AFFIRM was largely interpreted as showing no differences in the two strategies. But, really, there was a strong trend for worse outcomes in the rhythm-control arm. One of the major changes in knowledge that came from AFFIRM is the importance of maintaining oral anticoagulation (AC). In AFFIRM, patients in the rhythm control arm who were maintaining SR could stop their oral AC. This led to a difference in AC use 85% vs 70% rate vs rhythm control. In fact, AFFIRM largely changed the view that patients with AF with either strategy should remain on oral AC. The Sherman et al substudy in JAMA Internal Medicine found that patients who remained on warfarin were 68% less likely to have stroke. A large proportion of ischemic strokes (113 of 157) occurred in patients in whom anticoagulation had been stopped (on the basis of re-established normal sinus rhythm) and who had a subtherapeutic international normalized ratio. Eric's point about AFFIRM is it led to too many patients with AF being told that there was no reason to try to get into SR, and if you don't try, and you leave patients in AF, it becomes impossible to restore SR after a year or so. The other problems (or criticisms) of AFFIRM were that patients had to be able to tolerate rate-control. So highly symptomatic patients were excluded. AFFIRM should never have been applied to these patients. Many of these symptomatic patients were younger, and it is a serious error to just leave a symptomatic younger person with AF forever in AF. Another criticism of AFFIRM was that it only included antiarrhythmic drugs (AAD), and amiodarone was the most common one used. AAD were all that was available at the time. We now know that AF ablation is far more effective at rhythm control than drugs. So there is a like a bridge to SR early on, and many patients can be put into SR with rhythm control. Proponents of aggressive rhythm control also cite the EAST-AF trial, a rhythm vs rate control trial, which strongly favored rhythm control. But EAST-AF suffered from serious performance bias issues wherein the rhythm control arm got oodles more interactions with the health system. Here is my take of the decision: AFFIRM still applies. If you have an older person with minimal to no symptoms from AF, rate control is not only fine but maybe preferred. But if there are a) symptoms, and b) clues that rhythm control is possible (e.g., the LA size is not ginormous, or the patient can cooperate, and maybe the AF is not more than 2 years persistent), I try rhythm control. But I tell patients that while there is benefit from SR (in terms of quality of life) rhythm control is hard. It costs a lot, not only in money, but investment in their time and effort. Patients have to know that RF modification is crucial, they will also have to spend a few days in the hospital (for cardioversions, maybe drug initiation or ablation). Remember, when you are getting cardioversions and AAD and ablations you are not at work or on a bike. You are being a patient. It's fine. It's an investment but patients need to know that rhythm control is unlike a gallbladder operation or an appendectomy. Rhythm control is a process that requires a friendship with a cardiologist. It's not one and done. There are also risks to rhythm control. Drug side effects and ablation complications do occur. My friends, be careful flying close to the sun with rhythm control. One of the biggest mistakes I see in general cardiology is leaping to cardioversion without a plan. CV of AF is fine, but you have to have a plan for what will happen in a week or month when the patient is back in AF. CV doesn't modify the problem of AF. It just resets the heart. In the end: EP is here to help. Get us involved. Especially when there are symptoms. And doubly especially, when there is heart failure. But don't dismiss AFFIRM. It is important trial that shows that rate control is not a terrible strategy in selected patients. GLP-1 RAs Protective Against Stroke, Neurodegeneration? A GLP-1 study purports to show benefit in cerebrovascular health. It actually shows how observational studies can mislead you. The title of the study is, 'Neurodegeneration and Stroke After Semaglutide and Tirzepatide in Patients With Diabetes and Obesity.' It was published in JAMA Network Open . The goal of the Taiwan group was to evaluate the association of semaglutide and tirzepatide with the incidence of dementia, Parkinson disease, ischemic stroke, intracerebral hemorrhage, and all-cause mortality compared with other antidiabetic drugs in adults with type 2 diabetes and obesity. It's an important question. The best way would be to randomize, but that would be hard and costly. So this was a retrospective cohort study using electronic health records from the TriNetX US network, 2017-2024. The two groups in this study were those on GLP-1, either semaglutide or tirzepatide, vs those on any other diabetic medicines, such as metformin, sulfonylureas, DPP4, SGLT2 inhibitors, and others. This was a large study. About 30,000 in each of the two groups. The groups are not randomized. A doctor chose which of the two groups of drugs to use. So, since it's not randomized the authors did propensity matching. Age 57. Half female. BMI on average 40, and 70 % with hypertension. Here were the main results: During a 7-year follow-up, GLP-1 RA users had a lower risk of dementia (HR, 0.63; 95% CI, 0.50-0.81) lower risk of stroke (HR, 0.81; 95% CI, 0.70-0.93) lower all-cause mortality (HR, 0.70; 95% CI, 0.63-0.78) and had no significant differences in the risk of Parkinson disease or intracerebral hemorrhage. The authors concluded: 'These findings suggest potential neuroprotective and cerebrovascular benefits of GLP-1 receptor agonists beyond glycemic control, warranting further trials to confirm these outcomes.' Maybe these drugs are beneficial for cerebrovascular health, especially in young people (age 57 and diabetes and BMI of 40) But this is a hopelessly confounded study where healthier patients got the more pricey and newer drug. How do I know that? There are two clues. First, is that the Kaplan-Meier curve diverges immediately and continues in parallel. That's what you expect when healthier patients get one treatment. Immediately better outcomes. If the GLP-1 was better than other drugs, you'd see gradually increasing benefit. Second reason: the mortality benefit is huge. A 30% reduction in death. In the SELECT trial of semaglutide vs placebo in patients with heart disease and obesity, semaglutide only reduced CV mortality by 15%. In the SUSTAIN-6 trial of semaglutide vs placebo, semaglutide had no sig reduction in death or CV death and required a composite endpoint to drive positive results. My overall take, therefore, is that GLP-1 drugs induce weight loss. They do modify disease in patients with obesity and diabetes and patients with obesity and atherosclerotic disease. But whether they reduce important cerebrovascular outcomes like dementia cannot be answered by these confounded observational studies. I am not sure it's worth doing these studies because the only value is to show readers the signs of bias in non-random, retrospective comparison studies.

Answers To Your Most Pressing Questions About Migraine And Parenting
Answers To Your Most Pressing Questions About Migraine And Parenting

Yahoo

time13 hours ago

  • Yahoo

Answers To Your Most Pressing Questions About Migraine And Parenting

Throbbing head pain, sensitivity to light and sound, and feeling like you might vomit (or actually vomiting) don't tend to mix well with raising kids. If you're a mom who suffers from chronic migraine attacks, research backs up what you already know: Parenting through repeated headaches often makes you feel like you're falling short. Take a break, and you feel guilty about missing out on time you could have spent with your children. 'I'd constantly have to put myself to bed and not be as outgoing with them,' says Laura Hill, a Portland, Oregon-based mom of an 8- and 11-year-old. 'I still feel guilty about it sometimes. Like, why can't I just deal with it?' On the other hand, keep on parenting when you feel like a zombie, and your symptoms can turn you into the worst version of yourself. 'Even my kids' voices would bother me. I would get irritated and yell at them,' says Ana Verdecia, MD, a professor of neurology in Ohio who has children 8, 10, and 15 years old. As with so many parenting challenges, there's no one-size-fits-all solution for coping with headaches while still showing up for your kids. But hearing from others who have been there, done that, can help you feel less alone—and maybe give you some new strategies to try. We reached out to four moms who struggle with chronic migraine (including a headache doc!) to ask how they manage to pull off parenting in spite of the pain. Here's what they had to say. Q: How Do You Explain Your Migraines To Your Children? Every family is different, and how to approach the conversation depends on your kids' age and maturity level. The parents we chatted with generally aimed to be straightforward in an age-appropriate way. During the pandemic, Hill's migraine attacks were coming every day while she was single-parenting and working from home. Her kids, then 4 and 7, were fighting nonstop. 'I was really frustrated, because they were terrorizing each other and I was at the end of my rope from a sensory standpoint,' says Hill, whose splitting head pain comes with a blinding aura and facial numbness. Since just asking them to be quiet wasn't working, she tried to appeal to their self-interest. 'I sat them down, showed them my four medications, and said, 'This is what I have to take just to be what I am right now,'' she says. Then she explained how they'd benefit from being quieter. 'If you can help me by keeping the noise down,' she told them, 'I'll feel better and we can do more things.' It took many conversations, but eventually the message got through. These days, when a migraine hits Hill, her kids have learned to be more sensitive to her need for quiet. Older children can handle more information. Dr. Verdecia, who specializes in headache disorders, has explained to her 15- and 10-year-old that migraine is a brain disorder that cause certain symptoms. She's told them how some lifestyle behaviors (like staying hydrated and eating regular meals) can help prevent migraine attacks, but that these tactics don't work 100 percent of the time. Now when her head starts to throb, the rest of her family is understanding. 'They'll turn off the TV or the lights so I can get some relief,' she says. Q: How Do You Handle A Young Child When A Migraine Attack Happens? Having your partner or someone else take over while you get some peace and quiet is by far the best remedy. Norma Rhee, a Philadelphia-based mom to 3- and 6-year-old kids, has intense but relatively infrequent migraines. She says she has been lucky that her husband is usually around when she needs to cut out. 'If I were alone with the kids, I don't know what I would do,' she says. 'The migraines wipe me out and I just have to sleep.' Not everyone is so fortunate, and you can't exactly line up a babysitter in advance for a migraine. The solution: Find a few emergency backups able to come to the rescue on short notice, like a retired neighbor or a parent you've gotten friendly with. 'Call on the village to assist, for sure!' says Abbie Dillard, also from Philadelphia, who has a 7-year-old and an infant. Make sure to reach out to them as soon as you start to notice symptoms, to give them time to come over before your migraine knocks you off your feet. Q: What's Your Best Migraine-Management Strategy? According to Dr. Verdecia, some combination of meds and lifestyle changes is usually your best bet, though figuring out an effective game plan can take some trial and error and help from a neurologist. For her, the right combo is onabotulinumtoxinA injections and feel-good habits like eating consistent meals, getting adequate sleep, and exercising regularly. Hill relies on a combination of preventive oral medications (rimegepant, gabapentin, and methocarbamol), plus fast-acting migraine-abortive meds (diclofenac potassium, naratriptan, rizatriptan) when symptoms strike. Steering clear of triggers like repeated loud noises and eye strain helps, too. She wears prism glasses, which bend and redirect light to help her eyes focus, minimizing strain. No treatment plan is foolproof, and the obvious strategy is often the most effective: All of the parents we spoke to agreed that lying down in a dark, quiet room is the best thing to do when a migraine strikes. Q: Does Treatment Really Make A Difference In How You Parent? Yes, 100 percent. When you find a medication that makes you have fewer, less intense migraine attacks, you can be more present with your family and miss out on less stuff, Dr. Verdecia says. You'll probably have more positive interactions with your kids, too, since there are fewer instances where you're on edge just because they're doing normal kid things, like playing a loud game, asking for snacks every 15 minutes, or whining, Hill says. The key is being consistent with your treatment plan. That means if you're on a migraine-abortive med, you should take it the moment you start to feel symptoms to stop the headache in its tracks. 'I try to be very aware when I get the slightest tinge,' Dillard says. 'I have at least one rizatriptan pill in every outdoor item I have or could be using, just in case.' Q: What's The Most Surprising Thing You've Learned? There's no arguing that migraines suck. But if there's one possible silver lining to being a parent with a debilitating chronic condition, it's the fact that you have a built-in opportunity to demonstrate to your kids the importance of being sensitive to others' needs. 'It's teaching my kids some empathy—they have to be aware that I'm a person, too,' Hill says. You Might Also Like Jennifer Garner Swears By This Retinol Eye Cream These New Kicks Will Help You Smash Your Cross-Training Goals Solve the daily Crossword

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store