
Moon could be a $1 trillion treasure trove of precious metals
The moon has inspired myth-makers, stargazers and astronauts. In the future, it may tempt miners.
Scientists believe that billions of years of asteroid impacts have seeded the lunar surface with a fortune hiding in plain sight: precious metals potentially worth $1 trillion.
The estimate — described by the team behind it as 'conservative' — stems from a study that surveyed the moon's pockmarked terrain and calculated how many of its craters were likely to have been formed by asteroids rich in platinum group metals (PGMs): ruthenium, rhodium, palladium, osmium, iridium and platinum itself.
• 13 space missions to watch in 2025
Forged during the cataclysmic collisions of neutron stars, these elements are now indispensable to catalytic converters, electronics and the green economy.
'On cosmic timescales, over several generations of stellar birth and death, they get mixed with other elements and end up in planet-forming discs and then within planets and asteroids,' said Jayanth Vyasanakere, the study's lead author.
'Metallic asteroids have a significant fraction of iron, and the PGMs are found bound to it. When these asteroids strike a body such as the moon, depending on the impact velocity some of it may survive.'
Unlike Earth, the moon has no atmosphere to incinerate incoming space rocks, and no plate tectonics to bury their remnants deep underground. So much of what hits the surface should, in theory, remain there.
Vyasanakere and his co-authors estimate the moon may contain up to 30 million kilograms of PGMs. The true figure will depend on the size, speed and angle of asteroid impacts, and how much of their precious cargo survived the blast. But if the new study is even remotely accurate the moon would be by far the richest known reserve of PGMs beyond Earth. For context, terrestrial annual production is about 600 tonnes (600,000kg).
How concentrated the lunar deposits would be is uncertain, but Vyasanakere notes that PGMs in their parent asteroids are thought to be present at concentrations of 10 to 100 parts per million — on a par with, or better than, many terrestrial mines.
However, mining on the moon would present formidable technical hurdles. With only a sixth of Earth's gravity, traditional extraction techniques that rely on weight, pressure or fluid dynamics would be difficult to apply. There is also no liquid water — a particular challenge, since most terrestrial PGM refining methods are water-intensive. Engineers would need to radically rethink how to extract and process ore in a dry vacuum.
Yet our satellite offers logistical advantages that asteroids — another potential source of mineral wealth — cannot. It is close enough for near real-time remote operation of machinery. Robots could be directed from Earth with just a few seconds' communications delay, avoiding the need for fully autonomous systems, which would probably be essential for asteroid mining.
And unlike individual asteroids, which must be tracked and intercepted by spacecraft, the moon is a stationary target. Its entire surface can be mapped from orbit. In large part, it already has been.
'The lack of gravity also makes it impossible for a spacecraft to 'land' on an asteroid,' Vyasanakere said. 'And many asteroids are 'rubble piles' — their surface is not stable.'
So should investors brace for a collapse in the price of platinum?
'Prices could fall if, say, 100 tonnes of PGMs are brought back from the moon in one go,' Vyasanakere said. 'But this is very unlikely. The best-case scenario — at least in the early days of lunar mining — is that someone might be able to bring back a few tonnes per year, which shouldn't affect prices much.'
The study, whose authors include researchers from the the Harvard & Smithsonian Center for Astrophysics and the University of Birmingham, has been published in the journal Planetary and Space Science.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


The Guardian
12 hours ago
- The Guardian
‘It's something that happens': are we doing enough to save Earth from a devastating asteroid strike?
It is a scenario beloved of Hollywood: a huge asteroid, several miles wide, is on a collision course with Earth. Scientists check and recheck their calculations but there is no mistake – civilisation is facing a cataclysmic end unless the space rock can be deflected. It may sound like science fiction, but it is a threat that is being taken seriously by scientists. Earlier this year, researchers estimated that asteroid YR4 2024 had a 3.1% chance of hitting Earth in 2032, before revising that likelihood down to 0.0017%. This week, new data suggested it was more likely to hit the moon, with a probability of 4.3%. If that happens, the 53- to 67-metre (174ft-220ft) asteroid previously called a 'city killer' will launch hundreds of tonnes of debris towards our planet, posing a risk to satellites, spacecraft and astronauts. Before that, in April 2029, 99942 Apophis – an asteroid larger than the Eiffel Tower – will be visible to the naked eye when it passes within 32,000km of Earth. This attention-grabbing close encounter has prompted the UN to designate 2029 as the international year of planetary defence. When it comes to apocalyptic asteroid strikes, there is precedent, of course. Most scientists believe such an event hastened the demise of non-avian dinosaurs 66m years ago. 'This is something that happens,' said Colin Snodgrass, a professor of planetary astronomy at the University of Edinburgh. 'Not very often, but it is something that happens. And it's something that we could potentially do something about.' As Chris Lintott, a professor of astrophysics at the University of Oxford, told the UK parliament's science, innovation and technology committee this week, the risk posed by an asteroid originating beyond our solar system is minimal. Instead, he said, the greater threat comes from those in our cosmic back yard. 'Most asteroids in the solar system exist in the asteroid belt, which is between Mars and Jupiter, but they become disrupted, usually by encounters with either of those planets, and they can move into orbits that cross the Earth,' said Lintott, who presents the long-running BBC astronomy series The Sky at Night. 'Then it's just a case of whether we're in the wrong place at the wrong time.' The chances of an enormous asteroid – the type that did for the dinosaurs – hitting Earth is admittedly low. 'We think there's one of these every 10m to 100m years, probably,' Lintott told the Guardian. 'So I think you'd be right to ignore that when you decide whether to get up on a Thursday morning or not.' Snodgrass said there were 'precisely four' asteroids big enough and close enough to Earth to be considered 'dino-killers', and added: 'We know where they are, and they're not coming anywhere near us.' But damage can also be done by smaller asteroids. According to Nasa, space rocks measuring about one to 20 metres across collided with Earth's atmosphere resulting in fireballs 556 times over 20 years. Many collisions have occurred over the oceans, but not all. 'Chelyabinsk is the best example,' Lintott said. In 2013, a house-sized space rock – thought to have been about 20 metres across – exploded in the air above the Russian city with a force of nearly 30 Hiroshima bombs, producing an airburst that caused significant damage and hundreds of injuries, mostly from broken glass. Less dramatically, in February 2021 a space rock thought to have been just tens of centimetres across broke up in Earth's atmosphere, with fragments landing in the Cotswold town of Winchcombe in the UK. Thankfully, the damage was confined to a splat mark on a driveway. The types of asteroids we should perhaps be most concerned about are those about 140 metres across. According to Nasa, asteroids around that size are thought to hit Earth about once every 20,000 years and have the potential to cause huge destruction and mass casualties. The space agency has a congressional mandate to detect and track near-Earth objects of this size and larger, and a suite of new technological advances are helping them do just that. On Monday, the first images from the Vera C Rubin observatory in Chile were released to the public. This telescope is expected to more than triple the number of known near-earth objects, from about 37,000 to 127,000, over a 10-year period. In just 10 hours of observations, it found seven previously unspotted asteroids that will pass close to the Earth – though none are expected to hit. Also in the offing, though not planned for launch before 2027, is Nasa's near-Earth object (Neo) surveyor. Armed with an array of infrared detectors, this is 'the first space telescope specifically designed to detect asteroids and comets that may be potential hazards to Earth', the agency says. Lintott said: 'Between those two, we should find everything down to about 140 metres.' He said such observations should give scientists up to 10 years' warning of a potential collision. The European Space Agency (Esa) is planning a near-Earth object mission in the infrared (Neomir) satellite. Slated for launch in the early 2030s, this will help detect asteroids heading towards Earth that are at least 20 metres in diameter and obscured by the sun. Assessing the emerging capabilities, Edward Baker, the planetary defence lead at the UK's National Space Operations Centre (NSpOC) at RAF High Wycombe, said: 'I think we're in a good place. I can't see a situation like [the film] Don't Look Up materialising at all – though I wouldn't mind being portrayed by Leonardo DiCaprio.' As our ability to spot near-Earth asteroids increases, Lintott said, we should get used to hearing about asteroids like YR4 2024, which initially seem more likely to hit Earth before the risk rapidly falls towards zero. He described the shifting probabilities as similar to when a footballer takes a free kick. 'The moment they kick it, [it looks like] it could go anywhere,' he said. 'And then as it moves, you get more information. So you're like: 'Oh, it might go in the goal,' and then it inevitably becomes really clear that it's going to miss.' Of course, scientists aren't just monitoring the risks to Earth. They are also making plans to protect it. In 2022, Nasa crashed a spacecraft into a small, harmless asteroid called Dimorphos that orbits a larger rock called Didymos to test whether it would be possible to shift its path. The Dart mission was a success, reducing Dimorphos's 12-hour orbit around Didymos by 32 minutes. In 2024, Esa launched a follow-up to Nasa's Dart mission, called Hera. This will reach Dimorphos in 2026 and carry out a close-up 'crash site investigation'. It will survey the Dart impact crater, probe how effectively momentum was transferred in the collision and record a host of other measurements. Esa hopes this will provide crucial insights that can be used to make deliberate Dart-style impacts a reliable technique for safeguarding Earth. 'Dart was much more effective than anyone expected it to be,' Lintott said. 'And presumably that's something to do with the structure of the asteroid. I think we need to know whether Dart just got lucky with its target, or whether all near-Earth asteroids are like this.' For the most part, scientists say the threat of an asteroid strike does not keep them up at night. 'We're safer than we've ever been and we're about to get a lot safer, because the more of these things we find, the more we can spot them on the way in,' Lintott said. As Esa has quipped on its merchandise: 'Dinosaurs didn't have a space agency.'


Daily Mirror
13 hours ago
- Daily Mirror
Huge asteroid hurtles towards the Moon and could spark 'massive consequences'
NASA says the 10-storey YR4 asteroid could hit the Moon in 2032, which could see global communications come to a complete standstill as debris makes its way into the atmosphere and destroys satellites A huge asteroid that was thought to be heading towards earth is actually on course for the moon - which could wreak digital havoc across the planet. The city killer YR4 asteroid - which is the size of a 10-storey building - was first spotted at the end of 2024 and was said to have a three per cent chance of hitting the Earth. NASA's Centre for Near Earth Object Studies has now adjusted its prediction, giving the asteroid a 4.3 per cent chance of smashing into the moon as early as 2032. What makes it more terrifying is that the probability has been steadily increasing, after NASA gave it a 3.8 per cent probability in April and 1.7 per cent in February. According to experts, if the rock did make contact with the moon, it would have similar fallout to an atomic bomb. Scientists believe it would spark a meteor shower that could threaten our satellite systems. Australian National University astrologist and cosmologist, Brad Tucker, said just because the asteroid is no longer heading for Earth, it could still cause irreparable damage to the planet. 'So, when the odds shifted away from the earth they shifted towards the moon, it's still only four per cent - it's not even four per cent [it's] just about that - it's almost 1 in 25. That's enough that you want to pay attention to,' Mr Tucker said. It's unlikely that any fragments would plummeted to Earth, there is a possibility that some debris could enter our atmosphere - putting a number of vital satellites at risk of destruction. 'We're not worried about it hitting the ground because it would be so small our atmosphere would absorb it; there's actually a worry it may hit all of those satellites that we have going around us and that would cause a problem,' Mr Tucker tells Sky Australia. 'There could be a massive consequence in relation to them breaking up and creating their own ring of debris. We shouldn't just think about the earth in terms of safety, we really must think about the Moon as well.' Mr Tucker explained that new studies show how a strike with the moon could see huge amounts of debris being pulled into the atmosphere. Once there, it would make it 1,000 times more likely for a satellite to be hit. 'So it's one of those downward scenarios where we are thinking because of the way earth is now set up it actually may still have an impact," he said. In the event of a satellite strike, the sudden loss could wreak havoc on the ground. Global connectivity would be completely lost, as would navigation systems, financial markets and military operations. YR4 would be the largest space rock to hit the Moon in around 5,000 years, according to solar system dynamics expert Dr Paul Wiegert. Its collosal size means it would easily take out a space station or satellite, he said.


Telegraph
a day ago
- Telegraph
Why cats prefer sleeping on their left side
Cats prefer to sleep on their left side to protect themselves from predators, a study has found. The pets sleep for up to 16 hours a day and often curl up or stretch out for a snooze in opportune places. But the way the animal settles down is not random, and there is an evolutionarily hard-wired logic underpinning it, according to a study from the Ruhr University Bochum in Germany. Scientists found cats lie on their left side around two-thirds of the time, which shows that it was done deliberately. They looked at clips on YouTube of more than 400 sleeping cats and logged which side they were sleeping on. Data revealed that 266 of the cats (66.5 per cent) were on their left side, leaving scientists to conclude this was a survival trait from their history in the wild. Sleeping on their left side means when they wake, their left eye is able to see the local area unobstructed by the cat's own body. This visual information is then processed by the right side of the brain. This hemisphere is what processes threats and is responsible for escaping danger as well as knowing an individual animal's position. This puts the cat at an advantage compared to if it was to sleep on its right side – when the information is processed by the left side of the brain, which is less specialised to aid a swift escape. Anti-predator vigilance This leftward preference is just one of the many ways in which cats protect themselves. 'Sleep is one of the most vulnerable states for an animal, as anti-predator vigilance is drastically reduced, especially in deep sleeping phases,' according to the study. 'Domestic cats are both predators and prey (e.g. for coyotes) and sleep an average of 12–16 hours a day. 'Therefore, they spend almost 60-65% of their lifetime in a highly vulnerable state. To reduce predation risks, cats prefer to rest in elevated positions so that predators are more visible to them and the cats, in turn, are more visually concealed from predators. 'In such a spot, predators can access cats only from below. Thus, their preference for resting in an elevated position can provide comfort, safety, and a clear vantage point for monitoring their environments. 'We hypothesised that a lateralised sleeping position further increases the chances of quickly detecting predators (or to identify careless prey) when awoken.' Threat-processing leftward bias Pregnant cows are known to prefer their left side while sleeping for a similar reason, experts believe. The scientists also found that the pawedness of a cat, whether it preferred its left or right side, is likely not to blame for the sleeping preference. A 2017 study found that male cats tend to prefer their left paws and females are more right-paw dominant. 'We are inclined to believe that the significant leftward bias in sleeping position in cats may have been evolutionarily driven by hemispheric asymmetries of threat processing,' the scientists add in their paper, published in the journal Current Biology.