logo
Don't Miss This Weekend's Sky Show As Venus Woos Weirdly Wintry Stars

Don't Miss This Weekend's Sky Show As Venus Woos Weirdly Wintry Stars

Forbes11-07-2025
Venus will appear above Aldebaran while the Pleiades star cluster, pictured, sits above the pair.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

When To See The Moon And Venus Pair Up On Monday
When To See The Moon And Venus Pair Up On Monday

Forbes

time8 hours ago

  • Forbes

When To See The Moon And Venus Pair Up On Monday

The waning crescent Moon rising in a wide conjunction with Venus in the pre-dawn sky, over a snowy ... More field. (Photo by: Alan Dyer/VWPics/Universal Images Group via Getty Images) Early risers on Monday, July 21, will be treated to a striking scene in the eastern sky before sunrise as a slender crescent moon hangs just above brilliant Venus, with the red-orange star Aldebaran completing an equilateral triangle. Aldebaran is the brightest star in the constellation Taurus, the bull, and the eye of the animal. It's surrounded by a V-shape of stars in the night sky called the Hyades, an open cluster of stars, with two stars making a larger V-shape that acts as the horns of Taurus. However, Venus and the moon will, for one morning only, become the horns in an entrancing triangle of light. Where And When To Look The best time to catch the view will be about 45 minutes before sunrise on July 21. Look low in the east, where a 15%-lit waning crescent moon will be just above Venus. To the right of the pair will be Aldebaran, forming a near-perfect triangle. Monday, July 21: A Triangle Of Moon, Venus And Aldebaran What You'll See There will be much to see within and around the triangle. With Venus at magnitude –3.9, it will outshine everything around it except the moon, whose unlit portion will faintly glow with Earthshine — a soft reflection of sunlight bouncing off Earth's oceans and clouds. The Hyades stars around Aldebaran will also be worth making out. So, too, the contrast between Aldebaran's reddish glow and the white brilliance of Venus. While the Pleiades cluster isn't part of the triangle, it will be just above the trio in the eastern sky. Observing Tips You'll need to observe the conjunction from somewhere with a clear line of sight to the eastern horizon and minimal light pollution. No special equipment is needed to enjoy this conjunction, though binoculars will help you appreciate the delicate Earthshine, the Hyades and the Pleiades. What's Next in The Night Sky Just two mornings later, on July 23, a very slender waning crescent moon will rise near Jupiter in deep twilight, low in the east-northeast just before sunrise. It will be the moon's final visible appearance before the new moon. For exact timings, use a sunrise and sunset calculator for where you are, Stellarium Web for a sky chart and Night Sky Tonight: Visible Planets at Your Location for positions and rise/set times for planets. Wishing you clear skies and wide eyes.

Studying a galaxy far, far away could become easier with help from AI, says researcher
Studying a galaxy far, far away could become easier with help from AI, says researcher

Yahoo

time10 hours ago

  • Yahoo

Studying a galaxy far, far away could become easier with help from AI, says researcher

A recent Memorial University of Newfoundland graduate says his research may help study galaxies more efficiently — with help from Artificial Intelligence. As part of Youssef Zaazou's master's of science, he developed an AI-based image-processing technique that generates predictions of what certain galaxies may look like in a given wavelength of light. "Think of it as translating galaxy images across different wavelengths of light," Zaazou told CBC News over email. He did this by researching past methods for similar tasks, adapting current AI tools for his specific purposes, finding and curating the right dataset to train the models, along with plenty of trial and error. "Instead of … having to look at an entire region of sky, we can get predictions for certain regions and figure out, 'Oh this might be interesting to look at,'" said Zaazou. "So we can then prioritize how we use our telescope resources." Zaazou recently teamed up with his supervisors Terrence Tricco and Alex Bihlo to co-author a paper on his research in The Astrophysical Journal, which is published by The American Astronomical Society. Tricco says this research could also help justify allocation of high-demand telescopes like the Hubble Space Telescope, which has a competitive process to assign its use. A future for AI in astronomy Both Tricco and Zaazou emphasised the research does not use AI to replace current methods but to augment them. Tricco says that Zaazou's findings have the potential to help guide future telescope development, and predict what astronomers might expect to see, making for more efficient exploration. Calling The Astrophysical Journal the "gold standard" for astronomy journals in the world, Tricco hopes the wider astronomical community will take notice of Zaazou's findings. "We want to have them be aware of this because as I was mentioning, AI, machine learning, and physics, astronomy, it's still very new for physicists and for astronomers, and they're a little bit hesitant about these tools," said Tricco. Tricco praised the growing presence of space research in general at Memorial University. "We are here, we're doing great research," he said. He added growing AI expertise is also transferable to other disciplines. "I think that builds into our just tech ecosystem here as well." 'Only the beginning' Though Zaazou's time as a Memorial University student is over, he hopes to see research in this area continue to grow. "I'm hoping this is the beginning of further research to be done," he said. Though Zaazou described his contribution to the field as merely a "pebble," he's happy to have been able to do his part. "I'm an astronomer. And it just feels great to be able to say that and to be able to have that little contribution because I just love the field and I'm fascinated by everything out there," said Zaazou. Download our free CBC News app to sign up for push alerts for CBC Newfoundland and Labrador. Sign up for our daily headlines newsletter here. Click here to visit our landing page.

Fuzzy, Large, And Very Old: Everything We Know About Interstellar Comet 3I/ATLAS
Fuzzy, Large, And Very Old: Everything We Know About Interstellar Comet 3I/ATLAS

Yahoo

time18 hours ago

  • Yahoo

Fuzzy, Large, And Very Old: Everything We Know About Interstellar Comet 3I/ATLAS

We've only known about its existence for a few short weeks, and already astronomers have been able to learn a lot about the mysterious interstellar comet 3I/ATLAS. The object was detected on 1 July 2025, and it made a big splash. Scientists rapidly discovered that it came from outside the Solar System – just the third known object to have done so. Astronomers thronged to study, track, and categorize it. Thanks to their efforts, we now have a pretty detailed – but still evolving – profile of the unusual comet. Initial observations suggest that it is very different from the other two interstellar objects, 1I/'Oumuamua, which appeared in 2017, and 2I/Borisov, discovered in 2019. Related: Astronomers Have Traced Our New Interstellar Comet's Origin, And It's a First Here's what we know. Please note that all papers are, at time of writing, preprints that are awaiting peer review. Trajectory Ongoing observations of 3I/ATLAS have enabled astronomers to chart its future path through the Solar System. It was discovered when it was at a distance of 4.5 astronomical units from the Sun (one astronomical unit is the distance between Earth and the Sun). That placed it inside the orbit of Jupiter. It's traveling at just under 60 kilometers (37 miles) per second, but that will speed up as the comet approaches the Sun. 1I/'Oumumua was traveling at 26 kilometers per second, and 2I/Borisov at 32. The closest 3I/ATLAS will come to the Sun is around 1.36 astronomical units, inside the orbit of Mars, on 29 October 2025. Its closest approach to Earth will be in December 2025, when it will come to a distance of 1.8 astronomical units. Origin The speed and trajectory of 3I/ATLAS suggest that it comes from the thick disk of the Milky Way, the puffy region around the thin disk wherein just 15 percent of the galaxy's stellar mass resides. This part of the galaxy is relatively sparse, and most of the stars in it are very old. Age The comet's origin provides clues about its age. Since it seems to hail from a region of mostly elderly objects, it stands to reason that 3I/ATLAS is likewise quite venerable. This is supported by a separate paper that has analyzed the speed and velocity of the comet to try to calculate its age. It is traveling much faster than the two previous interstellar objects, 1I/'Oumuamua and 2I/Borisov, suggesting that it is older than them too. Future observations will help narrow down the object's age, but this analysis places it somewhere between 3 and 11 billion years old. The Universe is 13.8 billion years old, and the Sun is 4.6 billion. 3I/ATLAS is unlikely to be at the upper end of the age range, but it's still probably older than the Solar System. "This is an object from a part of the galaxy we've never seen up close before," says astrophysicist Chris Lintott of the University of Oxford in the UK, co-author of one of the papers that has emerged. "We think there's a two-thirds chance this comet is older than the Solar System, and that it's been drifting through interstellar space ever since." Appearance We don't know much about the appearance of 3I/ATLAS yet, because it is very small and still quite far away, but initial observations suggest that it is quite large compared to 1I/'Oumuamua and 2I/Borisov – about 10 kilometers across, compared to up to 400 meters long (around 1,300 feet) for 1I/'Oumuamua and 975 meters for 2I/Borisov. The spectrum of light reflected off the comet has been measured by a number of independent teams, all arriving at the same findings, suggesting that the object has either a complex mix of grain sizes, a different composition from those of Solar System comets, or a combo of both explanations. New images taken with the Gemini North telescope reveal the comet's puffy coma, a sort of 'atmosphere' of dust and gas that surrounds the comet. As it draws closer to the Sun, scientists expect its activity to pick up, resulting in cometary outgassing. "3I/ATLAS likely contains ices, especially below the surface, and those ices may start to activate as it nears the Sun," says astronomer Darryl Seligman of Michigan State University in the US. "But until we detect specific gas emissions, like H2O, CO or CO2, we can't say for sure what kinds of ice or how much there is." What next? Astronomers are going to continue keeping a close eye on 3I/ATLAS. Since it is so much larger than either of the previous two interstellar visitors, it presents a much better observation target, and its projected origin and age means it represents a rare opportunity to study parts of the galaxy in time and space that are usually out of reach. Its appearance has another implication, too. It suggests that interstellar visitors are relatively common to the Solar System – which is all the more reason to be excited about the forthcoming ESA/JAXA Comet Interceptor mission, designed to visit comets and study them up close, currently slated for a 2029 launch. Related News Sold: Largest Mars Rock Exceeds Auction Expectations One of 2025's Best Meteor Showers Is Upon Us: Here's How to Watch Meteorite Discovery Could Fill Billion Year Gap in Moon History Solve the daily Crossword

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store