logo
Tiny clawed tracks left in ancient mud are the oldest reptile footprints

Tiny clawed tracks left in ancient mud are the oldest reptile footprints

Yahoo22-05-2025
Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more.
Distinct clawed footprints found on a slab of 356 million-year-old rock from Australia suggest that reptile relatives appeared between 35 million and 40 million years earlier than previously believed.
The tracks also push back the origin of amniotes, a group that includes reptiles, birds and mammals, and provide new evidence about how animals transitioned from existing solely in the seas to living on land.
Amniotes represent a crucial part of the transition from aquatic to terrestrial life because they were the only tetrapods, or four-limbed creatures, that evolved to reproduce on land.
Previously, the oldest body fossils and footprints associated with amniotes were dated to 318 million years ago in Canada.
But the new findings, published on May 14 in the journal Nature, challenge such long-held assumptions and signal that the transformation of tetrapods living in water to living on land likely occurred much more rapidly than scientists thought.
'I'm stunned,' said study coauthor Per Erik Ahlberg, professor of evolution and developmental biology at Uppsala University in Sweden, in a statement. 'A single track-bearing slab, which one person can lift, calls into question everything we thought we knew about when modern tetrapods evolved.'
The location of the discovery indicates that Australia, once a central part of the ancient southern supercontinent of Gondwana that also included present-day Africa, South America, Arabia, Madagascar, Antarctica and India, may be the ideal place to look for more amniote and reptile fossils — and where they originated, according to the study authors.
The rock slab, found by amateur paleontologists and study coauthors Craig Eury and John Eason in the Snowy Plains Formation in Victoria, Australia, appears to show two sets of tracks from the same animal that represent the earliest clawed footprints ever discovered.
The shape of the feet is similar to a modern water monitor's, and though the animal's exact size is unknown, it may have resembled a small goanna-like creature about 80 centimeters (31 inches) in length, said lead study author John Long, strategic professor in paleontology at Flinders University. Asian water monitors are large lizards native to South and Southeast Asia, while goannas are large lizards commonly found in Australia.
Hooked claws, a key feature specific to reptiles, might have enabled the primitive tetrapod to dig and climb trees.
The animal that made the footprints is the oldest known reptile and oldest known amniote, Ahlberg said. And it's helping scientists crack the code on how tetrapods evolved.
'Our new find implies that the two main evolutionary lines leading to modern tetrapods — one, the line to modern amphibians, and two, the line leading to reptiles, mammals and birds — diverged from each other much earlier in time than previously thought, likely back in the Devonian Period about 380 million years ago,' Long said.
Prior to this finding, the Devonian Period was believed to be a time of primitive fishlike tetrapods and 'fishapods' like Tiktaalik, which exhibited traits of fish and early tetrapods and began to explore shorelines in limited ways.
But the new study reveals a diversity of large and small tetrapods, some aquatic and others largely or entirely terrestrial, likely lived at the same time.
'One of the implications of our research is that tetrapod diversity at this time was higher, and included more advanced forms, than had been thought,' Ahlberg wrote in an email.
It's crucial to understand when life shifted from being entirely aquatic to terrestrial because it is one of the biggest steps in the evolution of life, Long said. This transition showed that animals were no longer dependent on living in or near water.
The transition occurred partly because amniotes evolved to reproduce with hard-shelled, rather than soft-shelled, eggs.
'The vertebrates' move onto land was an important part, and within that a key step was the evolution of the amniotic egg in the immediate common ancestors of reptiles and mammals,' Ahlberg said. 'So these events form a key episode in our own ancestry as well as the history of the planet.'
The new study pushes the origin of amniotes much deeper into the Carboniferous Period, 299 million to 359 million years ago, which allows a much greater length of time for the diversification of early reptiles, said Stuart Sumida, president of the Society of Vertebrate Paleontology and professor of biology at California State University, San Bernardino. Sumida, who wrote an accompanying article to release with the study, did not participate in the new research.
Long has been studying ancient fish fossils from the Mansfield district, where the slab was found, since 1980.
'The Mansfield area has produced many famous fossils, beginning with spectacular fossil fishes found 120 years ago, and ancient sharks. But the holy grail that we were always looking for was evidence of land animals, or tetrapods, like early amphibians. Many had searched for such trackways but never found them — until this slab arrived in our laboratory to be studied,' he said.
Fossils from the Mansfield district have shed light on how sexual organs might have first evolved in ancient armored fish.
Now, the researchers want to know what else lived in Gondwana alongside the ancient reptile they found.
The findings have inspired researchers to broaden the search for fossils of the earliest amniotes, and their close relatives, to the southern continents, Sumida said.
'Most of the skeletal fossil discoveries of the earliest amniotes are known from continents derived from the northern components of Pangea,' Sumida said in an email. 'Discoveries there suggested that amniote origins might be in those regions. It seems clear to me now that we must now expand our search for Early Carboniferous localities in Australia, South America, and Africa.'
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Physicists Create First-Ever Antimatter Qubit, Making the Quantum World Even Weirder
Physicists Create First-Ever Antimatter Qubit, Making the Quantum World Even Weirder

Gizmodo

time20 hours ago

  • Gizmodo

Physicists Create First-Ever Antimatter Qubit, Making the Quantum World Even Weirder

Readers following our existential physics coverage may remember a recent breakthrough from CERN concerning matter's evil twin, antimatter. An outstanding mystery in physics is that our universe contains more matter than antimatter, contradicting most theoretical predictions. Scientists, therefore, understandably want to explain why and how this is the case. CERN announced yet another significant leap for studying antimatter—and this time, the achievement creeps into the realm of quantum computing. In a Nature paper published on July 23, CERN's Baryon Antibaryon Symmetry Experiment (BASE) collaboration announced the first-ever demonstration of an antimatter quantum bit, or qubit—the smallest unit of information for quantum computers. The qubit in question is an antiproton, a proton's antimatter counterpart, caught in a curious quantum swing—arcing back and forth between 'up' and 'down' spin states in perfect rhythm. The oscillation lasted for 50 seconds. The technical prowess that enabled this result represents a significant leap forward in our understanding of antimatter, the researchers claim. For the experiment, the team applied a technique called coherent quantum transition spectroscopy, which measures—with chilling precision—a particle's magnetic moment, or its behavior inside magnetic fields. First, the team brought in some antiprotons from CERN's antimatter factory, trapping the particles in an electromagnetic Penning trap—a superposition of magnetic fields. Next, they set up a second multi-trap inside the same magnet, extracting individual antiprotons to measure and tweak the particle's spin states in the process. Quantum states are fragile and easily disturbed by outside distractions. The wrong push can immediately send them spiraling down the drain toward decoherence—at which point the system loses the valuable information physicists hope to find. This fundamental limitation of quantum systems was a major concern for the BASE collaboration, who in 2017 used a similar setup to the new experiment to confirm that protons and antiprotons had practically identical magnetic moments. The team made substantial revisions to its technology, paying special attention to developing the mechanisms needed to suppress and eliminate decoherence. This hard work paid off; the antiproton performed a stable quantum swing for 50 seconds—a motion akin to how qubits exist in superpositions of states, which theoretically could allow them to store exponential loads of information. Additionally, it marked the first time physicists observed this phenomenon in a single free nuclear magnetic moment, whereas previous experiments had only seen it in large groups of particles. 'This represents the first antimatter qubit and opens up the prospect of applying the entire set of coherent spectroscopy methods to single matter and antimatter systems in precision experiments,' BASE spokesperson Stefan Ulmer said in a statement. That said, the team doesn't believe the new results will introduce antimatter qubits to quantum computing, at least not anytime soon. 'It does not make sense to use [the antimatter qubit] at the moment for quantum computers, because, simply speaking, engineering related to production and storage of antimatter is much more difficult than for normal matter,' Latacz explained, adding that since matter and antimatter are known to share fundamental properties, opting for the latter wouldn't make practical sense. 'However, if in the future [we find] that antimatter behaves differently than matter, then it may be interesting to consider this.' There are additional improvements the team hopes to make, which will happen sometime very soon, Latacz said. The upgrades to BASE—termed BASE-STEP—will greatly improve our capacity to study antiprotons with higher precision and allow us to 'improve the measurement of the magnetic moment of the antiproton by at least a factor of 10, and in a longer perspective even a factor of 100,' she said. The new breakthrough could contribute to engineering advances in quantum computing, atomic clocks, and other areas. But as the researchers emphasize, such technological applications aren't anything we should expect any time soon. Nevertheless, the result itself presents some fascinating lessons for fundamental physics—questions that may take years to answer, but to quote physicist Sean Carroll from the other recent CERN finding, 'Well, it's a small part of a much bigger puzzle—but you know, every part matters.'

CRISPR can stop malaria spread by editing a single gene in mosquitos
CRISPR can stop malaria spread by editing a single gene in mosquitos

Engadget

timea day ago

  • Engadget

CRISPR can stop malaria spread by editing a single gene in mosquitos

CRISPR gene-editing therapy has shown great potential to treat and even cure diseases, but scientists are now discovering how it can be used to prevent them as well. A team of researchers found a way to edit a single gene in a mosquito that prevented it from transmitting malaria, according to a paper published in Nature . These genetically modified mosquitos could eventually be released into the wild, helping prevent some of the 600,000 malaria deaths that occur each year. Mosquitos infect up to 263 million people yearly with malaria and efforts to reduce their populations have stalled as late. That's because both the mosquitos and their parasites that spread malaria have developed resistance to insecticides and other drugs. Now, biologists from UC San Diego, Johns Hopkins and UC Berkeley universities have figured out a way to stop malarial transmission by changing a single amino acid in mosquitos. The altered mosquitos can still bite people with malaria and pick up parasites from their blood, but those can no longer be spread to others. The system uses CRISPR-Cas9 "scissors" to cut out an unwanted amino acid (allele) that transmits malaria and replace it with a benign version. The undesirable allele, called L224, helps parasites swim to a mosquito's salivary glands where they can then infect a person. The new amino acid, Q224, blocks two separate parasites from making it to the salivary glands, preventing infection in people or animals. "With a single, precise tweak, we've turned [a mosquito gene component] into a powerful shield that blocks multiple malaria parasite species and likely across diverse mosquito species and populations, paving the way for adaptable, real-world strategies to control this disease," said researcher George Dimopoulos from Johns Hopkins University. Unlike previous methods of malarial control, changing that key gene doesn't affect the health or reproduction capabilities of mosquitos. That allowed the researchers to create a technique for mosquito offspring to inherit the Q224 allele and spread it through their populations to stop malarial parasite transmission in its tracks. "We've harnessed nature's own genetic tools to turn mosquitoes into allies against malaria," Dimopoulos said. If you buy something through a link in this article, we may earn commission.

Llamas could help treat schizophrenia: study
Llamas could help treat schizophrenia: study

New York Post

timea day ago

  • New York Post

Llamas could help treat schizophrenia: study

Talk about a llama-zing discovery. They're known for their fluffy furs and sassy stares, but scientists have discovered that llamas may also be the key to treating schizophrenia. And this isn't even the first time this year that llamas have been at the heart of curing a scary health issue. Advertisement They're known for their fluffy furs and sassy stares, but it turns out llamas may also be the key to treating schizophrenia. Cavan for Adobe – In a mind-blowing new study, French researchers have developed a molecule from llama antibodies that could one day help patients with schizophrenia overcome cognitive deficits — a major hurdle that existing treatments fail to address. Scientists at the Institute of Functional Genomics in Montpellier have engineered what's called a nanobody — a tiny antibody fragment found in camelids like llamas — that can activate a specific glutamate receptor responsible for brain signaling. What's more, this molecule can cross the blood-brain barrier — a major challenge in drug development — and go straight to work on neural receptors when injected via a vein or muscle. Advertisement Researchers tested the llama-derived nanobody in two preclinical models of schizophrenia. Just one injection was enough to boost brainpower in mice, showing a clear and sustained improvement in cognitive function for up to a week. More research will be needed to see if this presents a promising new avenue of treatment for schizophrenia and, if so, whether or not this can be expanded to treat other psychiatric and neurodegenerative diseases. Advertisement The findings were published Wednesday in the journal Nature. Schizophrenia is a chronic mental disorder that affects how people perceive reality, leading to hallucinations, delusions, disorganized thinking and speech, paranoia and time gaps. elnariz – Schizophrenia is a chronic mental disorder that affects how people perceive reality, leading to hallucinations, delusions, disorganized thinking and speech, paranoia and time gaps. More than 200,000 people in the US are living with schizophrenia, for which there is no cure. Advertisement The cause of schizophrenia is still unknown, but research suggests a combination of genetic and environmental factors are likely to encourage its onset, which typically occurs between the ages of 16 and 30. Schizophrenia is primarily treated with antipsychotics, which target some of the more severe symptoms like hallucinations and delusions, but fail to do much for cognitive function. This new study offers hope for repairing cognition, as opposed to simply managing symptoms. 'In humans obviously we don't know [yet], but in mice yes, it is sufficient to treat most deficits of schizophrenia,' paper author and CNRS molecular biologist Jean-Philippe Pin told Newsweek. 'For development as a therapeutic tool, more safety and bioavailability studies are needed. Production of large quantities of high quality must be set up to start human studies. For these two possibilities, either a company takes up our project or we find investors to create a startup company.' Meanwhile, another study published last month found that llamas may also hold the secret weapon to curing COVID — and it's also in their nanobodies. 'This work provides a strong foundation for developing next-generation antibodies that could be vital in combating not only current but also future coronavirus threats,' said Dr. Xavier Saelens, senior author of the study and a principal investigator at the VIB-UGent Center for Medical Biotechnology in Belgium.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store