
Matter's elusive dark twin: Most expensive substance in the universe
Dirac's calculation wasn't to be a mere mathematical quirk. Two years later, American particle physicist Carl Anderson found the positron, the electron's antimatter twin, in cosmic ray experiments. It was a moment of rare scientific poetry: a particle predicted by pure mathematics, then seen in nature.
Antimatter sounds like something from science fiction. And indeed, it has captured the imagination of writers from Star Trek (where it powers warp drives) to Angels and Demons (where it threatens to obliterate Vatican City). But antimatter is very real, though vanishingly rare in our universe. Whenever a particle meets its antiparticle, they annihilate in a flash of energy — converting all their mass, as per Einstein's , into pure light. That property makes antimatter the most energy-dense substance imaginable. A single gram could, in theory, produce as much energy as a nuclear bomb.
But if it's so powerful, why don't we use it? And why don't we see it everywhere?
Here lies one of the deepest mysteries in cosmology. The Big Bang, as we understand it, should have created equal amounts of matter and antimatter. But for reasons not yet fully known, the early universe tipped the scales ever so slightly toward matter — by just one part in a billion. That tiny excess is what makes up everything we see: stars, galaxies, people, planets. The rest annihilated with its antimatter counterpart in the early universe.
Physicists are still trying to understand why the universe has this imbalance. One possibility is that antimatter behaves slightly differently than matter — a tiny asymmetry in how particles decay, known as CP violation. Experiments at CERN and Fermilab are probing these effects, but so far, no definitive explanation has emerged.
The reality of antimatter: not just theory
Despite its elusiveness, antimatter isn't merely theoretical. We make it — routinely. In fact, hospitals around the world use positrons (antimatter electrons) every day in PET scans. The 'P' in PET stands for 'positron,' and the scan works by injecting a radioactive tracer that emits positrons. When these encounter electrons in the body, they annihilate and emit gamma rays, which are detected to create precise images of tissues.
Physicists at CERN's Antimatter Factory even trap anti-hydrogen atoms, composed of an antiproton and a positron, in magnetic fields for a few milliseconds at a time, to study their properties. The dream is to answer a simple but profound question: does antimatter fall down like regular matter, or does it somehow respond differently to gravity? Early experiments suggest it falls the same way, but the precision isn't yet conclusive.
Energy source or weapon?
Harnessing antimatter sounds like a sci-fi superpower, and indeed, the energy from matter-antimatter annihilation could, in theory, power spacecraft far more efficiently than any rocket we've built. But there's a catch: antimatter is mind-bogglingly expensive. Producing a single gram would cost about $60 trillion using today's particle accelerators. Worse, storing it safely is a nightmare. Let it touch anything, and boom, it annihilates.
That hasn't stopped the speculation. NASA has funded studies on antimatter propulsion, suggesting it could one day shorten interstellar travel. But for now, it remains out of reach, a gleaming prize at the edge of possibility.
Antimatter in space
Cosmic rays from deep space occasionally strike Earth's upper atmosphere, producing short-lived showers of antimatter particles. The International Space Station even carries an instrument called the Alpha Magnetic Spectrometer, scanning for signs of antimatter nuclei that could hint at entire regions of the universe made of antimatter — a speculative idea, but one not yet ruled out.
Neutron stars and black hole jets may also generate antimatter in tiny amounts, adding to the cosmic fireworks. But overall, the universe appears matter-dominated. Why nature chose this option, why there's something instead of nothing, remains among the deepest riddles in physics.
Final Reflections
In Star Trek, antimatter is a tame servant of human ambition. In reality, it's a fleeting, elusive shadow of the particles we know. Dirac's equations suggested a universe with perfect symmetry, but nature, like a mischievous artist, left a flaw in the mirror.
The story of antimatter reminds us that physics isn't just about numbers or formulas. It's about imagination, daring, and a relentless curiosity about the hidden sides of reality. Somewhere in the collision of matter and anti-matter lies a spark — of annihilation, yes, but also of wonder.
Shravan Hanasoge is an astrophysicist at the Tata Institute of Fundamental Research.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Time of India
7 hours ago
- Time of India
New space race: Acting Nasa chief Duffy to announce plan for building nuclear reactor on moon this week- Here's what we know
US transportation secretary Sean Duffy is set to reveal accelerated plans for constructing a lunar nuclear reactor this week, marking his first significant initiative as Nasa 's interim administrator. According to documents reviewed by POLITICO, this announcement will establish a clearer timeline for the lunar reactor project, despite Nasa facing substantial budget reductions. This initiative demonstrates Duffy's intention to influence Nasa's policy direction, even as he faced criticism for managing dual roles. "It is about winning the second space race," said a Nasa senior official, granted anonymity to discuss the documents ahead of their wider release. Following a disagreement with Tesla CEO Elon Musk in July, President Donald Trump appointed Duffy after withdrawing billionaire Jared Isaacman's nomination. Duffy has also issued instructions to expedite the International Space Station's replacement. These decisions could enhance American progress towards lunar and Martian missions, objectives that China is also pursuing. These initiatives reflect the Trump administration's emphasis on human spaceflight. The White House's 2026 budget proposal increases funding for crewed missions whilst significantly reducing other programmes, including a nearly 50 per cent reduction in science mission funding. The reactor initiative requires Nasa to request industry proposals for a 100 kilowatt nuclear reactor, targeting a 2030 launch date, crucial for lunar astronaut missions. Previously, Nasa funded research for a 40 kilowatt lunar reactor, planning deployment in the early 2030s. The directive warns that the first nation to establish a reactor could "declare a keep-out zone which would significantly inhibit the United States," reflecting concerns about a China-Russia collaborative project. Nasa must appoint a project leader and gather industry feedback within 60 days. The 2030 launch target aligns with China's planned first lunar landing. Nasa maintains involvement in nuclear development despite the Pentagon's recent termination of a joint nuclear-powered rocket engine programme. "While the budget did not prioritise nuclear propulsion, that wasn't because nuclear propulsion is seen as a non-worthy technology," the Nasa official stated. The space station directive seeks to replace the current International Space Station with commercial alternatives through revised contract procedures. Nasa intends to award contracts to at least two companies within six months of the proposal request. The goal is to establish a new station by 2030, preventing China from being the sole operator of a crewed orbital station. Several companies, including Axiom Space, Vast, and Blue Origin, have shown interest. However, legislators have expressed worry about insufficient funding allocation speed.


Time of India
a day ago
- Time of India
Scientists recreate first molecule of the universe after 13 billion years
In a groundbreaking breakthrough, scientists at the Max Planck Institute for Nuclear Physics in Germany have recreated one of the first chemical reactions to occur after the Big Bang : the formation of helium hydride ion (HeH⁺), believed to be the universe's first molecule . This experiment mimics conditions from more than 13 billion years ago and provides a clearer understanding of the chemical pathways that laid the foundation for star formation. By simulating these ancient reactions in the lab, researchers are helping to unravel the mysteries of the cosmos' earliest moments. Universe's first molecule and why it matters Helium hydride (HeH⁺) is a simple molecule formed from a neutral helium atom and a positively charged hydrogen nucleus (a proton). It likely formed just after the recombination era, about 380,000 years after the Big Bang, when atoms first stabilized and the universe became transparent to radiation. Though short-lived, HeH⁺ played a vital role in the cooling of primordial gas clouds, a key step in enabling gravitational collapse, the process that forms stars. Without these early molecules acting as coolants, the birth of stars and galaxies would have been significantly delayed or even altered. How scientists simulated the early universe by Taboola by Taboola Sponsored Links Sponsored Links Promoted Links Promoted Links You May Like Learn More - How Donating Sperm May Boost Your Income SpellRock Undo To recreate these ancient conditions, researchers employed the Cryogenic Storage Ring (CSR) in Heidelberg, a highly specialized instrument designed to simulate space-like environments. This 35-meter-diameter facility allows ions to circulate in an ultra-cold, vacuum-controlled environment, mimicking the near-zero temperatures of deep space. The team introduced HeH⁺ ions and bombarded them with a beam of neutral deuterium atoms (a hydrogen isotope with one proton and one neutron). This reaction formed HD⁺ (a deuterium-based analog to H₂⁺), closely simulating the early-universe chemistry that led to the creation of molecular hydrogen (H₂), the most abundant molecule in the universe today. Defying theoretical predictions on molecular cooling What surprised scientists was how efficient the reaction remained even at extremely low temperatures, contrary to long-held theoretical models. Earlier calculations had predicted a steep decline in reaction rates at near-zero temperatures, suggesting that HeH⁺ would be an insignificant player in the chemical evolution of the early cosmos. However, the experiment proved otherwise. The reaction was swift and showed no energy barrier, indicating it likely played a much greater role in dissipating heat from early gas clouds than previously thought. Theoretical physicists working alongside the experimental team also uncovered a critical flaw in earlier calculations, reinforcing the significance of the new results. Rewriting the chemistry of the cosmic dark ages After the universe cooled and neutral atoms formed, it entered a period known as the 'cosmic dark ages,' a time with no stars, no galaxies, and no visible light, only vast clouds of hydrogen and helium. During this time, molecular interactions like those involving HeH⁺ and H atoms were some of the few active chemical processes. These reactions laid the groundwork for the eventual formation of H₂, a molecule essential for radiative cooling and thus the gravitational collapse of gas clouds into stars. The new study suggests that HeH⁺ may have had a far more active and longer-lasting presence during this era than once believed. Broader implications for star formation and cosmology The results of this experiment have far-reaching consequences beyond HeH⁺ itself. By showing that barrierless, efficient reactions occurred under primordial conditions, the study enhances our understanding of how molecular hydrogen and its isotopic variants (like HD⁺) came into being and how they facilitated early star formation. This could help refine astrophysical models that simulate the formation of the first stars (Population III stars), galaxies, and ultimately the structure of the universe as we see it today. It also sheds light on the chemical evolution of the interstellar medium, where similar reactions continue to occur. A major step in reconstructing the universe's origins By successfully reproducing the earliest molecular reaction known to science, this experiment represents a major stride in astrochemistry and cosmology. It demonstrates how precise laboratory conditions on Earth can recreate moments from the dawn of the universe, helping scientists build a clearer picture of how matter evolved from chaos into complexity. With improved theoretical models and cutting-edge instrumentation, we are now better equipped than ever to answer some of the universe's oldest questions, including how the very first stars came to shine in the cosmic darkness.


Hindustan Times
2 days ago
- Hindustan Times
Indian-origin businessman, 80, lifts off for space in Blue Origin craft
Arvinder 'Arvi' Singh Bahal, an 80-year-old Agra-born adventurer and real estate investor, lifted off for space aboard Blue Origin's NS-34 mission on Saturday. The suborbital flight lifted off from the company's Launch Site One in West Texas, marking another milestone in private human spaceflight. Arvinder 'Arvi' Singh Bahal (centre) with some of the others set for Blue Origin's space tourism flight NS-34.(X/Blue Origin) Describing Bahal, Blue Origin wrote, 'Arvi is a real estate investor born in Agra, India, and now a naturalized US citizen. A lifelong traveler and adventurer, Arvi has visited every country in the world, the North and South Poles, and skydived Mount Everest and the Pyramids of Giza. He holds a private pilot's license and also flies helicopters.' Bahal, who now lives in the US and has traveled to every country in the world, was joined by five others on the 14th crewed mission of Blue Origin's New Shepard program. The diverse crew included: Justin Sun, Chinese crypto entrepreneur and TRON founder Deborah Martorell, Puerto Rican meteorologist Gokhan Erdem, Turkish businessman Lionel Pitchford, British educator and humanitarian JD Russell, American entrepreneur making his second Blue Origin flight The flight will last around 10 minutes and take the capsule past the Karman line - the internationally recognized boundary of space at 100 kilometers altitude - before returning safely to Earth. For Bahal, who is also a licensed pilot and a former Everest flyover participant, the spaceflight was the culmination of a lifelong passion for exploration. Blue Origin's space flights This was Blue Origin's third crewed flight of 2025, adding to its growing roster of space tourists as it continues to pioneer commercial space travel. Earlier this year, Blue Origin took Jeff Bezos' fiancee Lauren Sanchez to space an all-female celebrity crew that included American singer Katy Perry and actor Gayle King. Blue Origin New Shepard mission NS-31, its 11th human flight, lifted off from Launch Site One in West Texas on April 14 with an all-women crew.