Ancient DNA from Papua New Guinea reveals centuries of genetic isolation
The first ancient human genomes analyzed from Papua New Guinea reveal that some of the early groups that lived there were completely genetically isolated from their neighbors, showing there was little intermarriage at multiple points in time, a new study finds.
New Guinea is the second largest island in the world, after Greenland. It and its outlying isles were vital launch points for early seafaring journeys into the wider Pacific, culminating with the settlement of some of the last islands on Earth to be permanently inhabited, scientists noted. However, until now, much remained unknown about its ancient genetic history.
In a new study, researchers analyzed ancient DNA from the bones and teeth of 42 people who lived as long as 2,600 years ago on Papua New Guinea — the nation inhabiting the eastern half of New Guinea — and the nearby Bismarck Archipelago, northeast of the main island.
"This was a very long time in the making," study co-lead author Kathrin Nägele, an archaeogeneticist at the Max Planck Institute for Evolutionary Anthropology in Leipzig, Germany, told Live Science. "DNA preservation in tropical environments is extremely challenging."
Previous research suggested that New Guinea and outlying areas were first settled more than 50,000 years ago. Much later, by about 3,300 years ago, new seafaring peoples with Asian ancestry arrived at the Bismarck Archipelago. This group, which archaeologists have dubbed the Lapita culture, is renowned for their intricate pottery and farming practices, which included raising pigs, dogs and chickens, as well as growing coconuts, bananas, yams and varieties of breadfruit.
The new findings unexpectedly revealed the earliest known inhabitants of the Bismarck Archipelago and the Lapita people did not mix genetically for centuries. However, one individual examined suggested they were the result of intermixing about 2,100 years ago.
"Despite the co-occupation, it seems the different groups didn't mix for a long time, which is quite unusual for human encounters," study co-lead author Rebecca Kinaston, an anthropologist and director of BioArch South, an archaeology and forensic anthropology consultancy in New Zealand, said in a statement.
Related: Easter Island's population never collapsed because it never got that big, researchers suggest
These findings also shed light on the ancestry of remote Oceanic islands such as Samoa, Tonga and Vanuatu. They support prior research that Papuans and the Lapita independently arrived at those distant isles and intermarried there, as opposed to mixing first at New Guinea and nearby isles and then voyaging to those remote lands.
"It suggests the Papuans were separately capable of remarkable seafaring," Nägele said. "The seafaring hunter-gatherers on Papua New Guinea have likely been underestimated, just as hunter-gatherer societies tend to be underestimated all over."
Another striking discovery occurred when the scientists analyzed two communities that inhabited the south coast of Papua New Guinea between 150 and 500 years ago. "Although these two communities only lived a few kilometers apart, they were unexpectedly genetically different," Nägele said. "Looking into the direct family relations between the two sites, we had to go six generations back to find a common ancestor, which means that for six generations, the two groups did not mix despite the close proximity and no geological barriers between them."
Both groups had a mix of Papuan-related and Southeast Asia-related ancestries. One group, buried at the site Eriama, showed more of the Papuan-related ancestry compared to the site of Nebira, where Asian ancestry was the larger component.
Why did these groups stop mixing with each other? One possibility is a climatically challenging time on New Guinea between 1,200 and 500 years ago, which may have seen increased El Niño events, such as major droughts.
RELATED STORIES
—Some of the 1st ice age humans who ventured into Americas came from China, DNA study suggests
—Polynesians and Native Americans paired up 800 years ago, DNA reveals
—Newly discovered 'ghost' lineage linked to ancient mystery population in Tibet, DNA study finds
"Settlements were abandoned — people might have retreated to unknown places that were more viable," Nägele said. "We think wherever these people were, they started engaging in new trade networks. Nebira appeared to engage more with coastal groups, and Eriama more with inland groups from the highlands. This might have led to different identities, different cuisines, and other differences that led to cultural diversification."
In the future, the researchers hope to collect older genetic data, as well as samples from the highlands of New Guinea and the first Asian-related people to arrive on the coast of the island. "Papua New Guinea is such a diverse place in so many regards, that we have only just scratched the surface of what is to learn about the past of the second largest island in the world," Nägele said.
The scientists detailed their findings June 4 in the journal Nature Ecology & Evolution.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
16 hours ago
- Yahoo
When will the solar system die out?
When you buy through links on our articles, Future and its syndication partners may earn a commission. Our solar system has been around for 4.6 billion years. While that sounds like a long time, it's just a blip in the 13.8 billion-year story of the universe. And one day, the solar system will cease to exist. But when will the solar system end? And how will it die out? The answers to those questions depend on how we define the death of the solar system. The solar system consists of eight planets, several dwarf planets, hundreds of moons, and billions of asteroids, comets and meteoroids. The exact boundaries of the solar system are subject to debate, but there are three main candidates: the Kuiper Belt, a region of icy objects beyond Neptune; the heliopause, where the sun's magnetic field ends; and the Oort cloud, a theoretical icy cloud lying beyond both the Kuiper Belt and the heliosphere. And, of course, at the center of it all, the sun is keeping it all together with its immense gravity. Like all stars, the sun will eventually die. Right now, it creates heat and light by transforming hydrogen into helium in its core through a process called nuclear fusion. The sun will continue to burn hydrogen for approximately another 5 billion years, said Fred Adams, a theoretical astrophysicist at the University of Michigan. But once that hydrogen fuel runs out, the sun will become more and more unstable. Its core will collapse, its surface will expand, and it will transform into a cool, bloated red giant that will engulf Mercury and then Venus. Sign up for our newsletter Sign up for our weekly Life's Little Mysteries newsletter to get the latest mysteries before they appear online. While our planet might be at the border of the red giant's surface, Adams said, chances are, it will get sucked into the red giant, too. By this point, though, humans will have been long gone. Mars will likely survive the red giant, and the outer planets are all safely outside of the red giant's reach. The Oort cloud will also be destabilized, Stern said, and the heliosphere will shrink down. Related: When will the universe die? About a billion years later, the sun will shrink to the size of Earth and transform into a white dwarf — a dim, extremely dense core of its former self. The solar system will become a freezing, desolate place. "From a habitability standpoint, that's kind of the end of the solar system," Alan Stern, a planetary scientist and principal investigator of NASA's New Horizons mission, told Live Science. Although the sun's death marks the end of the solar system as we know it, it doesn't necessarily mean its total demise. "A strict, nerdy answer is that the solar system will never end due to the sun's evolution" or the death of the sun, Stern said. Even when the sun is a burnt out cinder, he said, many objects — including giant planets like Jupiter — will continue to orbit it. Even further into the future, Adams said, the likelihood of rare events increases. Without the sun's gravitational force, the solar system will become increasingly chaotic as the gravitational balance of the solar system shifts. The risk of collisions, passing stars or supernovas coming too close to the solar system and then tearing apart its celestial bodies and space rocks will also be magnified. RELATED MYSTERIES —Did light exist at the beginning of the universe? —Could a black hole devour the universe? —How long can an asteroid 'survive'? "We're not just waiting until the universe is twice as old. We're waiting till it's a billion times older, a trillion times older, and a quadrillion times older," he explained. "If you wait, those enormous time scales and rare events start to add up. It's like, it's rare for you to win the lottery, but if you play a billion times, your chances will go up." Even if the solar system is spared a catastrophic collision, it won't last forever. Some scientists also think the protons that make up our universe will decay. The phenomenon has never been observed, but theoretical experiments have placed the proton's lifetime past 1034 years, and that number might be pushed back even further as experiments into their longevity keep running. Solar system quiz: How well do you know our cosmic neighborhood? Solve the daily Crossword


UPI
17 hours ago
- UPI
The hidden dangers of feeding wild animals
Researchers at the University of California San Diego say feeding wild elephants can lead to serious harm. File Photo by Bill Greenblatt/UPI | License Photo Feeding wild elephants might seem kind or exciting, but a new study warns it can lead to serious harm. Researchers at the University of California San Diego say that giving food to wild animals -- especially elephants -- can change their behavior in dangerous ways. "Many people, especially foreign tourists, think Asian elephants are tame and docile, like domestic pets," lead author Shermin de Silva, a conservation scientist and professor of biological sciences, said in a UCSD news release. "They don't realize these are formidable wild animals and try to get too close in order to take photographs or selfies, which can end badly for both parties," she added. The study, published in the journal Ecological Solutions and Evidence, looked at 18 years of data from elephant tourism areas in Sri Lanka and India. In Sri Lanka's Udawalawe National Park, researchers found that dozens of elephants had learned to "beg" for food near fences and tourist vehicles. One male elephant, nicknamed Rambo, became a local celebrity for this behavior. The impact? Tragic. Several people were killed or injured in elephant encounters, the news release said. At least three elephants were killed, and some animals ate plastic bags or other waste while trying to get food. In India's Sigur region, researchers tracked 11 male elephants who were fed by people. Four of animals later died, likely because of humans. "Food-conditioned animals can become dangerous, resulting in the injury and death of wildlife, people or both," the researchers wrote. "These negative impacts counteract potential benefits," they added. Feeding wild elephants may cause them to lose their natural foraging skills, especially if they start relying on sugary snacks or processed food, researchers said. It may also raise the risk of disease spreading between people and animals. While most tourists mean well, experts say the best thing to do is never feed wild animals, no matter how safe it seems. Feeding animals might feel like helping a friend, the researchers explained. "But this encourages wild animals to seek food from people, attracting them to areas that can put themselves or people at risk," de Silva said. "It can be a conduit for disease transfer between species," she said. "Such feeding can also cause animals to lose their ability to forage for themselves if the behavior becomes prevalent, especially with young animals." More information The U.S. Fish and Wildlife Service has more on the potential harm in feeding wildlife. Copyright © 2025 HealthDay. All rights reserved.
Yahoo
a day ago
- Yahoo
Don't panic if you get a lot of light sleep — expert explains why it's just as important as deep sleep
When you buy through links on our articles, Future and its syndication partners may earn a commission. Light sleep makes up a significant portion of our rest but the term might cause alarm in some if they think they're getting too much 'light sleep' and not enough 'deep sleep.' Sleep trackers label it vaguely, but what does light sleep actually do for the body and mind? Spencer Dawson, PhD, Assistant Clinical Professor and Associate Director of Clinical Training at Indiana University's Department of Psychological and Brain Sciences describes the stages of 'light sleep' as well as what happens during them. Remember, if you're monitoring sleep using wearables, try not to put too much weight into their sleep tracking and scores. They aren't looking at brain activity—which is how sleep professionals know what's truly happening and when you're in specific sleep stages and those who love to know their sleep score, here's a trick that can get it to the 90s. What is light sleep? "When I see the term 'light sleep,' it's usually in association with someone using wearables,' says Dr. Dawson. This includes non-REM (rapid-eye movement) 1 and non-REM 2 sleep, he says. "Previously, these were called stages one and two, but now they're more specifically categorized as NREM1 and NREM2." NREM3 is considered deep sleep, and all three stages stand for Non-REM, with REM sleep meaning 'rapid eye movement'. NREM1 is the lightest stage of sleep. You might not even think you've dozed off. It can last only a few minutes. Dr. Dawson says he's heard it described as if someone dozing off in a recliner in front of the TV wakes up when the TV is shut off, saying, 'I was watching that.' In NREM2, the heart rate and breathing slow. The body can move a bit but the brain appears to have less activity happening. Why is light sleep important? REM sleep gets a lot of attention for its contributions to health, but you still need light sleep as part of a healthy sleep cycle. Sleep researchers find specific neural activity patterns occur during the NREM2 sleep stage. The ones referred to as 'sleep spindles' and 'K-complexes' indicate patterns involved with brain processes, including learning, memory, and stimulus processing, according to research. When does light sleep occur? The NREM1 stage of sleep is transitional from wake to sleep. 'It's fairly junky,' says Dr. Dawson. 'If you had a lot of that, you wouldn't feel good.' It usually makes up about five percent of a night's sleep. That's followed by NREM2 sleep which makes up about 50% of one's sleep. It's estimated that someone goes through four or five sleep cycles each night of about 90 minutes each. Those include REM and NREM sleep and bouts of waking up—even if you don't recall those wakeups. Sticking to a regular sleep schedule can help you get the light sleep and deep sleep you need. What happens during light sleep Light sleep or (Non-REM sleep) plays a role in the sleep cycle helping the body move into deep sleep modes. You usually spend more time in 'light sleep' in the early part of the night. 1. Heart rate slows The heart rate decreases during N1 and N2 sleep. This is likely how wearables make predictions that you're in those 'light stages' of sleep since they're usually monitoring your heart rate. Heart rate variability tends to be greater during REM sleep. 2. Brain waves slow During light sleep, your body can move but the brain looks like it's at rest, says Dr. Dawson. Sleep researchers look at brain activity in 30-second chunks of time, he says. During light sleep, we see these large, high amplitude, slow oscillations of brain activity. In REM sleep, the brain looks 'awake' and active while the body is immobile. 3. Body temperature drops The body temperature decreases as you move into 'light sleep' but recent research says the brain temperature also falls during this time. It's suspected that this temperature drop helps the body save energy where it can before the brain temperature increases during REM sleep. 4. Eye movement stops Since REM sleep involves 'rapid eye movement' — often side to side behind the eyelids — it's worth noting that during NREM2 sleep, eye movement stops. REM is the stage of sleep in which we dream, but you're unlikely to dream during light sleep. How much light sleep should we get? In general, about 50% of one's overall sleep should be 'light' sleep, which we're calling NREM1 and NREM2 sleep stages. That being said, everyone's needs differ and vary according to their ages. 'The amount of deep sleep your body goes into tends to reflect your sleep need,' says Dr. Dawson. 'It's a homeostatic process. So basically, your brain knows how much it needs, and if it needs more, it will do more [deep sleep]. And if it needs less, it'll do less.' Simply put, you can't do much to control which stages of sleep your body goes between each night. What happens if you spend too much time in light sleep? If you spend too much time in light sleep—instead of deep sleep—you're not going to feel good. You might never feel 'rested' even if you're in bed for the recommended seven to nine hours of sleep a night. You cycle through all of these sleep stages throughout the night, including briefly waking up between them, which is perfectly normal. 'While transitioning between REM and NonREM sleep and back, you might see some of the NREM1 sleep in there as well,' says Dr. Dawson. However, an indication that you're not cycling through the stages properly and spending too much time in light sleep is daytime irritability, fatigue, mood swings and sleep deprivation. Improving your sleep hygiene and maintaining a consistent sleep schedule, as well as aiming for seven to nine hours of sleep a night, will help you experience full and healthy sleep cycles