James Webb telescope finds 'totally unexpected' ancient galaxy that defies theory
An ancient galactic lighthouse is shining through the fog of the early universe, new James Webb Space Telescope (JWST) observations reveal.
Researchers discovered bright ultraviolet (UV) light coming from an ancient, distant galaxy. The findings, published March 26 in the journal Nature, suggest that the universe's first stars modified their surroundings even earlier than expected.
Shortly after the Big Bang, the universe was a soup of protons, neutrons and electrons. As the universe cooled, the protons and neutrons combined to form positively charged hydrogen ions, which then attracted negatively charged electrons to create a fog of neutral hydrogen atoms. This fog absorbed light with short wavelengths, such as UV light, blocking it from reaching farther into the universe.
But as the first stars and galaxies formed, they emitted enough UV light to knock the electrons back off the hydrogen atoms, allowing UV light out once again. Though this "Era of Reionization" is thought to have ended about a billion years after the Big Bang, scientists still aren't sure exactly when the first stars formed — or when the Era of Reionization began.
Related: James Webb telescope reveals 'cosmic tornado' in best detail ever — and finds part of it is not what it seems
The new findings could help narrow down that starting point. Using JWST, researchers observed an ancient galaxy known as JADES-GS-z13-1. The galaxy is so far from Earth that we're observing it as it appeared just 330 million years after the Big Bang.
In the JWST data, the scientists spotted bright light at a specific wavelength known as the Lyman-alpha emission, which is produced by hydrogen. Though the light started out as ultraviolet, the universe's expansion over more than 13 billion years has stretched it out into the infrared region, making it visible to JWST's sensors.
For the Lyman-alpha emission to reach Earth today, JADES-GS-z13-1 must have ionized enough of the hydrogen gas around it to allow the UV light to escape — something scientists hadn't expected so early in the universe's development.
"GS-z13-1 is seen when the universe was only 330 million years old, yet it shows a surprisingly clear, telltale signature of Lyman-alpha emission that can only be seen once the surrounding fog has fully lifted," study co-author Roberto Maiolino, an astrophysicist at the University of Cambridge, said in a statement. "This result was totally unexpected by theories of early galaxy formation and has caught astronomers by surprise."
RELATED STORIES
—James Webb telescope discovers 2 of the oldest galaxies in the universe
—James Webb telescope reveals 3 possible 'dark stars' — galaxy-sized objects powered by invisible dark matter
—'I was astonished': Ancient galaxy discovered by James Webb telescope contains the oldest oxygen scientists have ever seen
Researchers still don't know what produced the Lyman-alpha radiation in JADES-GS-z13-1. The light might come from extremely hot and massive early stars, or it might be produced by an early supermassive black hole.
"We really shouldn't have found a galaxy like this, given our understanding of the way the universe has evolved," study co-author Kevin Hainline, an astronomer at the University of Arizona, said in the statement. "We could think of the early universe as shrouded with a thick fog that would make it exceedingly difficult to find even powerful lighthouses peeking through, yet here we see the beam of light from this galaxy piercing the veil."
"This fascinating emission line has huge ramifications for how and when the universe reionized," Hainline concluded.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
10 hours ago
- Yahoo
Stunning Grand Canyon Fossils Reveal Evolution's Weird Experiments
A stunning new fossil find from the Grand Canyon fills in some blanks from a time when evolution began experimenting with weird new forms. About half a billion years ago, life on Earth really started cooking in an event we now call the Cambrian explosion. The fossil record from that time reveals a spike in bizarre, complex creatures appearing within a relatively short amount of time, laying the roots for most of the major animal groups that exist today. Frustratingly, fossils from later in the Cambrian period are rarer, so we don't have a clear picture of evolution's experimental second album. But a newly discovered batch of extremely well-preserved fossils could patch up that gap. These are about 505 million years old – 3 million years younger than the Burgess Shale, the layer in which fossils from the Cambrian explosion appear. Related: A team led by researchers at the University of Cambridge found more than 1,500 small, carbonaceous fossils in samples from the Bright Angel Formation (BAF) of the Grand Canyon, which was once a shallow marine environment. The vast majority of the fossils are priapulid worms, along with a couple hundred crustaceans and a few mollusks. Although ecological resources were plentiful at the time, competition was also on the rise, rewarding species that exploited new niches. Analysis of these fossils revealed a variety of adaptations to do just that. A worm species called Kraytdraco spectatus, for example, was found to be covered in teeth sporting elaborate filaments, which varied in shape and length based on where they were on the body. The researchers suggest that they used their tougher teeth to scrape and rake surfaces, kicking up food particles that they could then filter out of the water using the longer filaments. Crustacean fossils featured signs of suspension feeding by way of tiny hairs that pushed food particles towards the mouth to be ground up by molar-like structures. The mollusks, meanwhile, sported rows of shovel-shaped teeth that could have been dragged front-to-back to scrape algae or microbes from surfaces. The Cambrian explosion gets plenty of attention because it's so well-represented in the fossil record, but that was just the beginning. The newly described fossils, with their exceptional level of preserved detail, provide a fascinating glimpse into the time soon after that, when complex life was established and comfortable, and had the stability to start innovating with new forms. And we should be glad it did: most of the major groups (or phyla) of animals got their start during the Cambrian. That includes arthropoda, encompassing all insects, arachnids, and crustaceans. And there's chordata, which includes us and the rest of our backbone-bearing brethren. The competitive period of the late Cambrian could have cemented the strategies that helped animals stay successful half a billion years later. "If the Cambrian Explosion laid the foundations of modern metazoan adaptive solutions, it is the scaling up of their competitive interactions that may have enforced directional, long-term trends of functional innovation in the Phanerozoic biosphere," the researchers write. The study was published in the journal Science Advances. Related News Neither Scales Nor Feathers: Bizarre Appendage Discovered on Reptile Fossil America's Largest Crater Has Surprise Link to Grand Canyon, Study Finds 500-Million-Year-Old Fossil Suggests Ocean Origin For Spiders Solve the daily Crossword


Axios
12 hours ago
- Axios
New Air and Space Museum galleries open in D.C.
New galleries will open at the Air and Space Museum on Monday. Why it matters: It marks another completed phase of the Smithsonian museum's almost $1 billion renovation, which began in 2018 and will see all 20 galleries refreshed and 1,400 new artifacts by next year. (Just in time for its 50th anniversary, and the celebration of America's 250th birthday.) State of play: The openings include three existing galleries that got glow-ups, plus two brand-new ones: 👽 Futures in Space: Ponder where space exploration could take us in the future at this new gallery, with cool pieces like an R2-D2 replica and a mock-up of the Blue Origin capsule that took Jeff Bezos to space in 2021. 🌎 Allan and Shelley Holt Innovations Gallery: This new installation will feature a rotating lineup of exhibits focused on innovation in the aerospace world. On display now: A look at how air and space advancements are helping to tackle climate change. 🚀 Boeing Milestones of Flight Hall: The newly refreshed entrance is reopened with museum must-sees like the Mercury Friendship 7 capsule and the Bell X-1, plus new displays. 🛩️ Barron Hilton Pioneers of Flight: Learn about the trailblazers leading the way in aviation during the 1920s and '30s at this revamped gallery, complete with Charles Lindbergh's Spirit of St. Louis plane and Amelia Earhart's Lockheed Vega 5B. 🪖 World War I: The Birth of Military Aviation: This refreshed gallery is all about the first World War's aviation history, with displays like a Sopwith F. 1 Camel and a U.S. balloon basket used for spying. Plus: The museum's renovated Imax theater is now open.


Gizmodo
13 hours ago
- Gizmodo
Physicists Create First-Ever Antimatter Qubit, Making the Quantum World Even Weirder
Readers following our existential physics coverage may remember a recent breakthrough from CERN concerning matter's evil twin, antimatter. An outstanding mystery in physics is that our universe contains more matter than antimatter, contradicting most theoretical predictions. Scientists, therefore, understandably want to explain why and how this is the case. CERN announced yet another significant leap for studying antimatter—and this time, the achievement creeps into the realm of quantum computing. In a Nature paper published on July 23, CERN's Baryon Antibaryon Symmetry Experiment (BASE) collaboration announced the first-ever demonstration of an antimatter quantum bit, or qubit—the smallest unit of information for quantum computers. The qubit in question is an antiproton, a proton's antimatter counterpart, caught in a curious quantum swing—arcing back and forth between 'up' and 'down' spin states in perfect rhythm. The oscillation lasted for 50 seconds. The technical prowess that enabled this result represents a significant leap forward in our understanding of antimatter, the researchers claim. For the experiment, the team applied a technique called coherent quantum transition spectroscopy, which measures—with chilling precision—a particle's magnetic moment, or its behavior inside magnetic fields. First, the team brought in some antiprotons from CERN's antimatter factory, trapping the particles in an electromagnetic Penning trap—a superposition of magnetic fields. Next, they set up a second multi-trap inside the same magnet, extracting individual antiprotons to measure and tweak the particle's spin states in the process. Quantum states are fragile and easily disturbed by outside distractions. The wrong push can immediately send them spiraling down the drain toward decoherence—at which point the system loses the valuable information physicists hope to find. This fundamental limitation of quantum systems was a major concern for the BASE collaboration, who in 2017 used a similar setup to the new experiment to confirm that protons and antiprotons had practically identical magnetic moments. The team made substantial revisions to its technology, paying special attention to developing the mechanisms needed to suppress and eliminate decoherence. This hard work paid off; the antiproton performed a stable quantum swing for 50 seconds—a motion akin to how qubits exist in superpositions of states, which theoretically could allow them to store exponential loads of information. Additionally, it marked the first time physicists observed this phenomenon in a single free nuclear magnetic moment, whereas previous experiments had only seen it in large groups of particles. 'This represents the first antimatter qubit and opens up the prospect of applying the entire set of coherent spectroscopy methods to single matter and antimatter systems in precision experiments,' BASE spokesperson Stefan Ulmer said in a statement. That said, the team doesn't believe the new results will introduce antimatter qubits to quantum computing, at least not anytime soon. 'It does not make sense to use [the antimatter qubit] at the moment for quantum computers, because, simply speaking, engineering related to production and storage of antimatter is much more difficult than for normal matter,' Latacz explained, adding that since matter and antimatter are known to share fundamental properties, opting for the latter wouldn't make practical sense. 'However, if in the future [we find] that antimatter behaves differently than matter, then it may be interesting to consider this.' There are additional improvements the team hopes to make, which will happen sometime very soon, Latacz said. The upgrades to BASE—termed BASE-STEP—will greatly improve our capacity to study antiprotons with higher precision and allow us to 'improve the measurement of the magnetic moment of the antiproton by at least a factor of 10, and in a longer perspective even a factor of 100,' she said. The new breakthrough could contribute to engineering advances in quantum computing, atomic clocks, and other areas. But as the researchers emphasize, such technological applications aren't anything we should expect any time soon. Nevertheless, the result itself presents some fascinating lessons for fundamental physics—questions that may take years to answer, but to quote physicist Sean Carroll from the other recent CERN finding, 'Well, it's a small part of a much bigger puzzle—but you know, every part matters.'