Two meteorites found in the Sahara could be from the solar system's least studied rocky planet, scientists say
The least studied and most mysterious of the solar system's rocky planets, Mercury is so close to the sun that exploring it is difficult even for probes. Only two uncrewed spacecraft have visited it to date — Mariner 10, launched in 1973, and MESSENGER, launched in 2004. A third, BepiColombo, is en route and due to enter orbit around the planet in late 2026.
Scientists know little about Mercury's geology and composition, and they have never been able to study a fragment of the planet that landed on Earth as a meteorite. In contrast, there are more than 1,100 known samples from the moon and Mars in the database of the Meteoritical Society, an organization that catalogs all known meteorites.
These 1,100 meteorites originated as fragments flung from the surfaces of the moon and Mars during asteroid impacts before making their way to Earth after a journey through space.
Not every planet is likely to eject fragments of itself Earth-ward during collisions. Though Venus is closer to us than Mars is, its greater gravitational pull and thick atmosphere may prevent the launch of impact debris. But some astronomers believe that Mercury should be capable of generating meteors.
'Based on the amount of lunar and Martian meteorites, we should have around 10 Mercury meteorites, according to dynamical modeling,' said Ben Rider-Stokes, a postdoctoral researcher in achondrite meteorites at the UK's Open University and lead author of a study on the Sahara meteorites, published in June in the journal Icarus.
'However, Mercury is a lot closer to the sun, so anything that's ejected off Mercury also has to escape the sun's gravity to get to us. It is dynamically possible, just a lot harder. No one has confidently identified a meteorite from Mercury as of yet,' he said, adding that no mission thus far has been capable of bringing back physical samples from the planet either.
If the two meteorites found in 2023 — named Northwest Africa 15915 (NWA 15915) and Ksar Ghilane 022 (KG 022) — were confirmed to be from Mercury, they would greatly advance scientists' understanding of the planet, according to Rider-Stokes. But he and his coauthors are the first to warn of some inconsistencies in matching those space rocks to what scientists know about Mercury.
The biggest is that the fragments appear to have formed about 500 million years earlier than the surface of Mercury itself. However, according to Rider-Stokes, this finding could be based on inaccurate estimates, making a conclusive assessment unlikely. 'Until we return material from Mercury or visit the surface,' he said, 'it will be very difficult to confidently prove, and disprove, a Mercurian origin for these samples.'
But there are some compositional clues that suggest the meteorites might have a link to the planet closest to the sun.
It's not the first time that known meteorites have been associated with Mercury. The previous best candidate, based on the level of interest it piqued in astronomers, was a fragment called Northwest Africa (NWA) 7325, which was reportedly found in southern Morocco in early 2012.
Rider-Stokes said that was the first meteorite to be potentially associated with Mercury: 'It got a lot of attention. A lot of people got very excited about it.' Further analysis, however, showed a richness in chrome at odds with Mercury's predicted surface composition.
More recently, astronomers have suggested that a class of meteorites called aubrites — from a small meteorite that landed in 1836 in Aubres, France — might come from Mercury's mantle, the layer below the surface. However, these meteorites lack a chemical compatibility with what astronomers know about the planet's surface, Rider-Stokes said. 'That's what's so exciting about the samples that we studied — they have sort of the perfect chemistry to be representative of Mercury,' he said.
Most of what is known about Mercury's surface and composition comes from NASA's MESSENGER probe, which assessed the makeup of the planet's crust from orbit. Both meteorites from the study, which Rider-Stokes analyzed with several instruments including an electron microscope, contain olivine and pyroxene, two iron-poor minerals confirmed by MESSENGER to be present on Mercury.
The new analysis also revealed a complete lack of iron in the space rock samples, which is consistent with scientists' assumptions about the planet's surface. However, the meteorites contained only trace amounts of plagioclase, a mineral believed to dominate Mercury's surface.
The biggest point of uncertainty, though, is still the meteorites' age. 'They are about 4.5 billion years old,' Rider-Stokes said, 'and most of Mercury's surface is only about 4 billion years old, so there's a 500 million-year difference.'
However, he said he thinks this discrepancy is not sufficient to rule out a Mercurian origin, due to the limited reliability of MESSENGER's data, which has been also used to estimate the age of Mercury's surface layer.
'These estimates are based on impact cratering models and not absolute age dating, and therefore may not be entirely accurate,' Rider-Stokes said. 'It doesn't mean that these samples aren't good analogs for regional areas on the surface of Mercury, or the early Mercurian crust that is not visible on the modern surface of Mercury.'
With more modern instruments now available, BepiColombo, the European Space Agency probe that will start studying Mercury in early 2027, may be able to answer long-standing questions about the planet, such as where it formed and whether it has any water.
Having material confirmed to have come from other planetary bodies helps astronomers understand the nature of early solar system's building blocks, Rider-Stokes said, and identifying fragments of Mercury would be especially crucial since a mission to gather samples from the planet closest to the sun and bring them back would be extremely challenging and expensive.
Sean Solomon, principal investigator for NASA's MESSENGER mission to Mercury, said in an email that he believes the two meteorites described in the recent paper likely did not originate from Mercury. Solomon, an adjunct senior research scientist at Columbia University in New York City, was not involved with the study.
The primary reason Solomon cited for his doubts is that the meteorites formed much earlier than the best estimates for the ages of rocks now on Mercury's surface. But he said he thinks the samples still hold research value.
'Nonetheless, the two meteorites share many geochemical characteristics with Mercury surface materials, including little to no iron … and the presence of sulfur-rich minerals,' he added. 'These chemical traits have been interpreted to indicate that Mercury formed from precursor materials much more chemically reduced than those that formed Earth and the other inner planets. It may be that remnants of Mercury precursor materials still remain among meteorite parent bodies somewhere in the inner solar system, so the possibility that these two meteorites sample such materials warrants additional study.'
Solomon also noted that it was difficult to persuade the planetary science community that there were samples from Mars in meteorite collections, and that it took precise matching of their chemistry with data about the surface of Mars taken by the Viking probes to convince researchers to take a closer look. Lunar meteorites were also not broadly acknowledged to be in meteorite collections until after the existence of Martian meteorites had been demonstrated in the 1980s, he added, even though the Apollo and Luna missions had returned abundant samples of lunar materials more than a decade earlier.
Once samples are confirmed to be from a planetary body, Solomon said, they can provide crucial information not available from remote sensing by an orbiting spacecraft on the timing of key geological processes, the history of internal melting of the body, and clues to planet formation and early solar system processes.
Rider-Stokes plans to continue the discussion around these meteorites at the annual meeting of the Meteoritical Society, which takes place in Perth this week. 'I'm going to discuss my findings with other academics across the world,' he said. 'At the moment, we can't definitively prove that these aren't from Mercury, so until that can be done, I think these samples will remain a major topic of debate across the planetary science community.'
Editor's Note: A version of this story's headline has been updated to clarify that the samples are thought to possibly be from the solar system's least studied rocky planet.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
an hour ago
- Yahoo
NASA satellite captured two solar eclipses in one day
NASA's eye on the Sun took a little break on Friday, to watch two different solar eclipses throughout the day. The Solar Dynamics Observatory is parked out in geosynchronous orbit above North America, keeping its cameras trained on the Earth-facing side of the Sun. It's mission: to keep us in the loop on solar activity, including sunspots, solar flares, and coronal mass ejections. This immense solar filament tore itself away from the Sun's surface in August 2012, becoming a coronal mass ejection as it expanded out into space. (NASA SDO) On July 25, 2025, that mission was briefly interrupted — twice, in fact — as two other objects blocked the satellite's view of the Sun. Starting around 2:40 UTC on Friday (10:40 p.m. EDT Thursday), the orbits of SDO and the Moon synced up, producing a partial solar eclipse as the Moon crossed SDO's field of view. A partial solar eclipse viewed only from space, courtesy SDO's 171 Angstrom filtered view, which captures extreme ultraviolet light to visualize the activity going on in the Sun's lower atmosphere, including the immense coronal loops that extend away from the surface. The Moon's disk took roughly an hour, from around 2:40-3:40 UTC, to pass across the Sun. (NASA SDO/Scott Sutherland) These transits typically occur around the date of the New Moon, when the Moon is nearly or exactly in between the Sun and Earth. However, they rely heavily on the exact orientation of SDO's orbit in relation to the Moon's tilted orbit around Earth. According to NASA, during this 'lunar transit', the Moon covered 62 per cent of the solar disk at maximum. This was the fourth time since April that the Moon passed in front of the Sun from SDO's point of view. It was also the deepest transit so far in 2025 — 23 per cent of the Sun was covered during the April 27 pass, while on April 28, the Moon covered only 2 per cent, and on May 25, it covered only 4 per cent of the Sun's disk. Hours later, as SDO continued on its orbit around Earth, the planet itself got in the way of its operations, as it completely filled the satellite's field view. Two frames from SDO's cameras capture the closest point to when the Earth eclipsed the spacecraft's view of the Sun and when that eclipse ended. Small inset views show computer renderings of the satellite and what its view of the Sun was at that time. (NASA SDO/Scott Sutherland) From roughly 6:30 UTC to after 8:00 UTC (2:30 a.m. to 4 a.m. EDT on Friday), the Sun disappeared behind Earth. Unlike the crisp-edged eclipse produced by the Moon, the presence of Earth's atmosphere results in a much more hazy edge in SDO's images. SDO has roughly two 'eclipse seasons' per year, and is currently in its 31st since the mission launched. It begain on July 10, and will last until August 7. During that time, periodic 'blackouts' of solar imagery occur as the Earth gets in the way. This is the only time, so far, this year that SDO saw eclipses from both the Moon and Earth in the same day, though. Watch below: What is Space Weather? (Out of this World) Click here to view the video
Yahoo
8 hours ago
- Yahoo
Scientists stunned by 'lethal' discovery made while studying popular swamp: 'We wonder what else is being affected'
Scientists stunned by 'lethal' discovery made while studying popular swamp: 'We wonder what else is being affected' Although swamps have garnered a reputation for being formidable locations with dangerous species and spooky visuals, they play a pivotal role in an ecosystem. That is why a recent discovery made in some swamps of Georgia and South Carolina has researchers worried. What's happening? According to a recent study published in Environmental Toxicology and Chemistry, elevated levels of mercury have been detected in several swamps throughout the Deep South. The discovery was made when a team of researchers was conducting a study on alligators in the region. They selected Jekyll Island and the Okefenokee Swamp in Georgia as well as the Yawkey Wildlife Center in South Carolina as their primary locations. While speaking to UGA Today, Kristen Zemaitis, lead author of the study and a graduate of the University of Georgia, noted the importance of alligators. "Alligators are very ancient creatures, and we can look at them in these areas as an indicator of what else might be happening in the ecosystem," Zemaitis said. "Studying them can relate to many different things in the food web." This is why the team of researchers was stunned when they began measuring mercury levels at the three research sites. Mercury exists naturally in the Earth's crust and can be released into the environment through natural processes. However, as noted in the study, mercury is a "potent neurotoxin, commonly assessed in contaminant body burdens." Why are elevated levels of mercury in swamps important? Oftentimes, human activities such as industrial pollution and urbanization can result in regional "hot spots" with elevated mercury concentrations. With this in mind, the research team spent several months analyzing blood samples from more than 100 alligators across the Okefenokee Swamp, Jekyll Island, and the Yawkey Wildlife Center. Their findings revealed that mercury concentrations were around eight times higher in alligators inhabiting the Okefenokee Swamp than at any of the other sites. "That's one of the results from the study that was most striking to me," said Jeb Byers, co-author of the study. "Mercury is a neurotoxin that is very lethal to organisms. If it builds up, it moves through the food web and creates the perfect storm. That's what we have in the Okefenokee," added Byers, a UGA professor. The researchers determined that mercury is perhaps moving up through the food chain at a faster rate than previously thought. When mercury enters marine environments from various sources, it can be absorbed by small organisms in the food chain. As larger species eat these smaller organisms, it can lead to higher levels in larger predators, such as alligators. What's being done about these high levels of mercury? High levels of mercury can prove to be problematic for local communities that rely on fishing industries for their food supply. "Mercury contamination can be a high concern for the people who can be consuming a lot of fish or game species from the rivers, swamps or oceans that have high mercury," Zemaitis noted. While the study has revealed alarming results, Zemaitis said that this can potentially help us learn more about which species are most affected in our environment. "Now that we know this about one of the apex predators in these systems, we wonder what else is being affected?" added Zemaitis. The researcher explained that further studies could better explain where the excess mercury levels are coming from and how prominent the neurotoxin is in the ecosystem. Do you worry about having toxic forever chemicals in your home? Majorly Sometimes Not really I don't know enough about them Click your choice to see results and speak your mind. Join our free newsletter for good news and useful tips, and don't miss this cool list of easy ways to help yourself while helping the planet. Solve the daily Crossword
Yahoo
19 hours ago
- Yahoo
Interstellar Meteors Hit Earth All the Time but Still Elude Astronomers
Astronomers think small space rocks from beyond our solar system routinely strike Earth—but proving it isn't easy Aliens are visiting our solar system. Not little green men, sadly, but natural alien objects—cosmic bodies such as comets and asteroids born elsewhere in the galaxy that zip by the sun as they drift through the Milky Way. They're not so much visiting as just passing through. Though these objects were speculated to exist for a long time, we didn't know they were out there for sure until October 2017, when astronomers noticed a small body moving through space at exceptionally high speed. Observations over just a few nights showed it was moving far too quickly to be orbiting the sun and thus must have come from some other star. It was our first known interstellar visitor. [Sign up for Today in Science, a free daily newsletter] Eventually designated 1I/'Oumuamua, it was 30 million kilometers from Earth and already outward bound from the solar system when it was discovered, offering scant time for follow-up studies. But then, less than two years later, a second such object was found, also moving far faster than usual. 2I/Borisov turned out to be a comet very similar to those we're familiar with, except for its trajectory, which clearly showed it came from interstellar space. And now a third such alien body is barreling through the solar system: 3I/ATLAS, moving so rapidly its path is barely bent at all by the sun's gravity as it zooms past. In science, one is an anomaly and two might be coincidence, but three is a trend. Clearly, objects like this are passing by on the regular. Roughly speaking, there could be ones 100 meters in size or larger passing through the inner solar system at any time. Given their speed and intrinsic faintness, though, they're difficult to detect. We also know that when it comes to things such as asteroids and comets, nature tends to make many more smaller ones than bigger ones. In our own solar system, for example, only a couple of dozen main-belt asteroids are bigger than 200 km wide, but more than a million are 1 km across or larger. This generalization should hold for interstellar interlopers as well. For every kilometer-scale one that we see, there should be far more that are smaller. In fact, there could be millions of sand-grain-sized alien objects whizzing past us right now. And we already know that they're out there: in 2014 astronomers announced they had found seven grains of cosmic dust brought down to Earth from the Stardust space probe, which was designed to catch material ejected from a comet. Also, embedded in some meteorites that have hit Earth are tiny bits of material, called presolar grains, that are so old they actually formed around other stars. They got here after being blown across the void of space into the collapsing cloud of gas and dust that formed the sun and planets 4.6 billion years ago. Larger material could be ejected from an alien planetary system if it's given a gravitational assist when passing by a planet there, or it could be torn away from its parent star by another star passing closely to that system. So it seems certain interstellar jetsam would occasionally hit our planet. Earth is a small target, but with so many galactic bullets, you'd think some would actually find their way to our planetary bull's-eye. The problem is detecting them. Every day Earth is hit by very roughly 100 tons of locally grown interplanetary debris—material ejected from asteroids and comets native to our solar system—which translates into billions of tiny specks zipping across our sky daily. Detecting the tiny fraction that have an interstellar origin is tough. And the difficulty is not just in the sheer numbers. It's in tracing the trajectories of that small handful across the sky back up into space to calculate their orbits. When an object such as a planet or an asteroid orbits the sun, we say it's gravitationally bound to our star. That orbit in general is an ellipse, an oval shape. These can be defined mathematically, with the key factor being the eccentricity: how much the ellipse deviates form a circle. A perfect circle has an eccentricity of 0, and the higher the eccentricity, the more elliptical the orbit, up to a value of just under 1. An orbit with an eccentricity of 0.99, say, is extremely elongated; you might find that an object dropping down very close to the sun from the outer solar system has an eccentricity that high. It's possible to have an eccentricity higher than 1 as well. That kind of trajectory is called hyperbolic—named after the mathematical curve, not because it's exaggeratedly over-the-top—and an object on this path is not bound to the sun gravitationally. Once it's heading out, it's gone forever. It ain't coming back. This is how we know 'Oumuamua, Borisov and ATLAS are from interstellar space; each has an eccentricity greater than 1—'Oumuamua's is about 1.2 and Borisov's 3.4, which is quite high, but ATLAS has them both beat with an astonishing eccentricity of 6.2. That's extraordinarily high and also indicates it's hauling asteroid (or, more accurately, it's not comet back). Do we see any meteors with eccentricities like these? If the exact path of a meteoroid (the term for the solid bit that burns up in the air and becomes a meteor) through Earth's atmosphere can be determined, that can be backtracked up into space, allowing the object's trajectory, including its eccentricity, to be calculated. This can be done with multiple sky cameras set up in various locations; if a meteor streaks across their field of view, the multiple vantages can allow astronomers to triangulate on the rock and measure its path. There are quite a few such camera networks. It's actually difficult getting good enough data to determine solid orbits for meteoroids, though. Many do have eccentricities very close to 1; these likely come from long-period comets that originate out past Neptune. NASA's Jet Propulsion Laboratory maintains a database of bright fireballs—exceptionally luminous meteors—at the Center for Near-Earth Object Studies (CNEOS). The earliest recorded meteors in the database date back to 1988, so there is a rich hunting ground in the data. Are any of the meteors listed hyperbolic? Unfortunately, no. At least, not unambiguously—there have been false positives but nothing clear-cut. Additionally, a study from 2020 looked at 160,000 measurements by the Canadian Meteor Orbit Radar covering 7.5 years. The researchers found just five potential interstellar meteors. The results aren't quite statistically strong enough to claim detections for sure, but they're very compelling. What we need are more eyes on the sky, more meteor camera networks that can catch as many of these pieces of cosmic ejecta burning up in our atmosphere as possible. It's a numbers game: the more we see, the more likely we'll see some that are not from around here. The science would be, well, stellar: these meteors can tell us a lot about the environments around other stars, the ways they formed and perhaps even the stars they come from. We're getting physical samples from the greater galaxy for free. We should really try to catch them. Hat tip to planetary scientist Michele Bannister for the link to the CNEOS article. Solve the daily Crossword