logo
Slashing NIH research guarantees a less healthy, less wealthy America

Slashing NIH research guarantees a less healthy, less wealthy America

In recent months, funding for biomedical research from the National Institutes of Health has been canceled, delayed and plunged into uncertainty. According to an April STAT News analysis, NIH funding has decreased by at least $2.3 billion since the beginning of the year. KFF Health News reports the full or partial termination of approximately 780 NIH grants between Feb. 28 and March 28 alone. Additional NIH funding cuts loom on the horizon, including proposed cuts to indirect costs.
Amid this volatility, one thing remains clear: NIH grant funding is a valuable, proven investment, economically and in terms of improving human health.
A recent United for Medical Research report shows that in fiscal year 2024, research funded by the NIH generated $94.58 billion in economic activity nationwide, a 156% return on investment. Further, the report shows that NIH funding supported 407,782 jobs nationwide. According to the NIH's own figures, patents derived from work it has funded produce 20% more economic value than other U.S. patents.
These economic returns — including a return on investment that would thrill any startup or stock investor — cannot begin to capture the impact on individuals, families and communities in terms of increased longevity and higher quality of life.
While it is hard to precisely quantify human health improvements resulting from NIH-funded research, there are proxy measures. As one example, a study published in JAMA Health Forum found that NIH funding supported the development of 386 of 387 drugs approved by the Food and Drug Administration from 2010-19. Many of the approved drugs address the most pressing human health concerns of our time, including cancer, diabetes, cardiovascular disease, infectious diseases and neurological disorders such as Parkinson's disease.
Many other NIH-funded advancements represent what is now considered common knowledge, such as the relationship between cholesterol and cardiovascular health, or standard practice, such as screening newborns for serious diseases that may be treatable with early medical intervention. But each of these fundamental aspects of contemporary medicine had to first be discovered, tested and proved. They represent what NIH funding can do — and the type of paradigm-shifting advancements in medicine that are now very much at risk.
Consider the biotechnology industry as one such paradigm shift. In the 1970s, Stanley Cohen and Herbert Boyer were the first scientists to clone DNA and to transplant genes from one living organism to another. This work launched the biotechnology industry.
Two decades later, the NIH and the Department of Energy began a 13-year effort to sequence the human genome, including through university-based research grants. In 2003, the consortium of researchers produced a sequence accounting for 92% of the human genome. In 2022, a group of researchers primarily funded by the NIH's National Human Genome Research Institute produced a complete human genome sequence. This work paved the way for insights into inherited diseases, pharmacogenomics (how genetics affect the body's response to medications) and precision medicine.
NIH funding has also led to major breakthroughs in cancer treatments. In 1948, Sidney Farber demonstrated the first use of a chemotherapy drug, aminopterin, to induce remission in children with acute leukemia. Before Farber's research, which was funded in part by the NIH, children with acute leukemia were unlikely to survive even five years.
Over the years that followed, other modes of cancer treatment such as immunotherapy emerged, first as novel areas of inquiry, followed by drug development and clinical trials. NIH funding supported, among others, the development of CAR T cell therapy, which genetically modifies a patients' own T-cells to fight cancer. CAR T cell therapy has improved outcomes for many patients with persistent blood cancers, and clinical trials are ongoing to discover other cancers that might be treatable with CAR T cell therapies.
For decades, scientists knew that breast cancer could run in families and hypothesized a genetic role. In the 1990s, teams of scientists — supported at least in part by NIH funding — tracked down the BRCA1 and BRCA2 genes responsible for inherited predispositions to breast and other cancers. Today, many people undergo testing for BRCA gene mutations to make informed decisions about prevention, screening and treatment.
These kinds of advancements, along with improvements in detection and screening, have meaningfully reduced cancer mortality rates. After hitting a smoking-related peak in 1991, U.S. mortality rates from all cancers dropped by 34% as of 2022, according to the American Cancer Society. For children with acute leukemias, who had effectively no long-term chance of survival just 75 years ago, the numbers are even more dramatic. The five-year survival rate is now approximately 90% for children with acute lymphocytic leukemia and between 65% and 70% for those with acute myelogenous leukemia.
These examples represent a fraction of the tremendous progress that has occurred through decades of compounding knowledge and research. Reductions in NIH funding now threaten similar breakthroughs that are the prerequisites to better care, better technology and better outcomes in the most common health concerns and diseases of our time.
It is not research alone that is threatened by NIH funding cuts. Researchers, too, face new uncertainties. We have heard firsthand the anxiety around building a research career in the current environment. Many young physician-scientists wonder whether it will be financially viable to build their own lab in the U.S., or to find jobs at research institutions that must tighten their belts. Many medical residents, fellows and junior faculty are considering leaving the U.S. to train and build careers elsewhere. Losing early-career researchers to other fields or countries would be a blow to talent for biomedical research institutions nationwide and weaken the country's ability to compete globally in the biomedical sector.
The effects of decreased NIH funding might not be immediately visible to most Americans, but as grant cancellations and delays mount, there will be a price. NIH funding produces incredible results. Cuts will set scientific research back and result in losses in quality of life and longevity for generations of Americans in years to come.
Euan Ashley is the chair of the Stanford University department of medicine and a professor of medicine and of genetics. He is the author of 'The Genome Odyssey: Medical Mysteries and the Incredible Quest to Solve Them.' Rachel Keranen is a writer in the Stanford department of medicine.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

NIH cuts spotlight a hidden crisis facing patients with experimental brain implants
NIH cuts spotlight a hidden crisis facing patients with experimental brain implants

Hamilton Spectator

time12 hours ago

  • Hamilton Spectator

NIH cuts spotlight a hidden crisis facing patients with experimental brain implants

Carol Seeger finally escaped her debilitating depression with an experimental treatment that placed electrodes in her brain and a pacemaker-like device in her chest. But when its batteries stopped working, insurance wouldn't pay to fix the problem and she sank back into a dangerous darkness. She worried for her life, asking herself: 'Why am I putting myself through this?' Seeger's predicament highlights a growing problem for hundreds of people with experimental neural implants, including those for depression, quadriplegia and other conditions. Although these patients take big risks to advance science, there's no guarantee that their devices will be maintained — particularly after they finish participating in clinical trials — and no mechanism requiring companies or insurers to do so. A research project led by Gabriel Lázaro-Muñoz, a Harvard University scientist, aimed to change that by creating partnerships between players in the burgeoning implant field to overcome barriers to device access and follow-up care. But the cancellation of hundreds of National Institutes of Health grants by the Trump administration this year left the project in limbo, dimming hope for Seeger and others like her who wonder what will happen to their health and progress. An ethical quagmire Unlike medications, implanted devices often require parts, maintenance, batteries and surgeries when changes are needed. Insurance typically covers such expenses for federally approved devices considered medically necessary, but not experimental ones. A procedure to replace a battery alone can cost more than $15,000 without insurance, Lázaro-Muñoz said. While companies stand to profit from research, 'there's really nothing that helps ensure that device manufacturers have to provide any of these parts or cover any kind of maintenance,' said Lázaro-Muñoz. Some companies also move on to newer versions of devices or abandon the research altogether, which can leave patients in an uncertain place. Medtronic, the company that made the deep brain stimulation, or DBS, technology Seeger used, said in a statement that every study is different and that the company puts patient safety first when considering care after studies end. People consider various possibilities when they join a clinical trial. The Food and Drug Administration requires the informed consent process to include a description of 'reasonably foreseeable risks and discomforts to the participant,' a spokesperson said. However, the FDA doesn't require trial plans to include procedures for long-term device follow-up and maintenance, although the spokesperson stated that the agency has requested those in the past. While some informed consent forms say devices will be removed at a study's end, Lázaro-Muñoz said removal is ethically problematic when a device is helping a patient. Plus, he said, some trial participants told him and his colleagues that they didn't remember everything discussed during the consent process, partly because they were so focused on getting better. Brandy Ellis, a 49-year-old in Boynton Beach, Florida, said she was desperate for healing when she joined a trial testing the same treatment Seeger got, which delivers an electrical current into the brain to treat severe depression. She was willing to sign whatever forms were necessary to get help after nothing else had worked. 'I was facing death,' she said. 'So it was most definitely consent at the barrel of a gun, which is true for a lot of people who are in a terminal condition.' Patients risk losing a treatment of last resort Ellis and Seeger, 64, both turned to DBS as a last resort after trying many approved medications and treatments . 'I got in the trial fully expecting it not to work because nothing else had. So I was kind of surprised when it did,' said Ellis, whose device was implanted in 2011 at Emory University in Atlanta. 'I am celebrating every single milestone because I'm like: This is all bonus life for me.' She's now on her third battery. She needed surgery to replace two single-use ones, and the one she has now is rechargeable. She's lucky her insurance has covered the procedures, she said, but she worries it may not in the future. 'I can't count on any coverage because there's nothing that says even though I've had this and it works, that it has to be covered under my commercial or any other insurance,' said Ellis, who advocates for other former trial participants. Even if companies still make replacement parts for older devices, she added, 'availability and accessibility are entirely different things,' given most people can't afford continued care without insurance coverage. Seeger, whose device was implanted in 2012 at Emory, said she went without a working device for around four months when the insurance coverage her wife's job at Emory provided wouldn't pay for battery replacement surgery. Neither would Medicare, which generally only covers DBS for FDA-approved uses. With her research team at Emory advocating for her, Seeger ultimately got financial help from the hospital's indigent care program and paid a few thousand dollars out of pocket. She now has a rechargeable battery, and the device has been working well. But at any point, she said, that could change. Federal cuts stall solutions Lázaro-Muñoz hoped his work would protect people like Seeger and Ellis. 'We should do whatever we can as a society to be able to help them maintain their health,' he said. Lázaro-Muñoz's project received about $987,800 from the National Institute of Mental Health in the 2023 and 2024 fiscal years and was already underway when he was notified of the NIH funding cut in May. He declined to answer questions about it. Ellis said any delay in addressing the thorny issues around experimental brain devices hurts patients. Planning at the beginning of a clinical trial about how to continue treatment and maintain devices, she said, would be much better than depending on the kindness of researchers and the whims of insurers. 'If this turns off, I get sick again. Like, I'm not cured,' she said. 'This is a treatment that absolutely works, but only as long as I've got a working device.' ____ The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Department of Science Education and the Robert Wood Johnson Foundation. The AP is solely responsible for all content.

NIH cuts spotlight a hidden crisis facing patients with experimental brain implants
NIH cuts spotlight a hidden crisis facing patients with experimental brain implants

Yahoo

time13 hours ago

  • Yahoo

NIH cuts spotlight a hidden crisis facing patients with experimental brain implants

Carol Seeger finally escaped her debilitating depression with an experimental treatment that placed electrodes in her brain and a pacemaker-like device in her chest. But when its batteries stopped working, insurance wouldn't pay to fix the problem and she sank back into a dangerous darkness. She worried for her life, asking herself: 'Why am I putting myself through this?' Seeger's predicament highlights a growing problem for hundreds of people with experimental neural implants, including those for depression, quadriplegia and other conditions. Although these patients take big risks to advance science, there's no guarantee that their devices will be maintained — particularly after they finish participating in clinical trials — and no mechanism requiring companies or insurers to do so. A research project led by Gabriel Lázaro-Muñoz, a Harvard University scientist, aimed to change that by creating partnerships between players in the burgeoning implant field to overcome barriers to device access and follow-up care. But the cancellation of hundreds of National Institutes of Health grants by the Trump administration this year left the project in limbo, dimming hope for Seeger and others like her who wonder what will happen to their health and progress. An ethical quagmire Unlike medications, implanted devices often require parts, maintenance, batteries and surgeries when changes are needed. Insurance typically covers such expenses for federally approved devices considered medically necessary, but not experimental ones. A procedure to replace a battery alone can cost more than $15,000 without insurance, Lázaro-Muñoz said. While companies stand to profit from research, 'there's really nothing that helps ensure that device manufacturers have to provide any of these parts or cover any kind of maintenance,' said Lázaro-Muñoz. Some companies also move on to newer versions of devices or abandon the research altogether, which can leave patients in an uncertain place. Medtronic, the company that made the deep brain stimulation, or DBS, technology Seeger used, said in a statement that every study is different and that the company puts patient safety first when considering care after studies end. People consider various possibilities when they join a clinical trial. The Food and Drug Administration requires the informed consent process to include a description of 'reasonably foreseeable risks and discomforts to the participant,' a spokesperson said. However, the FDA doesn't require trial plans to include procedures for long-term device follow-up and maintenance, although the spokesperson stated that the agency has requested those in the past. While some informed consent forms say devices will be removed at a study's end, Lázaro-Muñoz said removal is ethically problematic when a device is helping a patient. Plus, he said, some trial participants told him and his colleagues that they didn't remember everything discussed during the consent process, partly because they were so focused on getting better. Brandy Ellis, a 49-year-old in Boynton Beach, Florida, said she was desperate for healing when she joined a trial testing the same treatment Seeger got, which delivers an electrical current into the brain to treat severe depression. She was willing to sign whatever forms were necessary to get help after nothing else had worked. 'I was facing death,' she said. 'So it was most definitely consent at the barrel of a gun, which is true for a lot of people who are in a terminal condition.' Patients risk losing a treatment of last resort Ellis and Seeger, 64, both turned to DBS as a last resort after trying many approved medications and treatments. 'I got in the trial fully expecting it not to work because nothing else had. So I was kind of surprised when it did,' said Ellis, whose device was implanted in 2011 at Emory University in Atlanta. 'I am celebrating every single milestone because I'm like: This is all bonus life for me.' She's now on her third battery. She needed surgery to replace two single-use ones, and the one she has now is rechargeable. She's lucky her insurance has covered the procedures, she said, but she worries it may not in the future. 'I can't count on any coverage because there's nothing that says even though I've had this and it works, that it has to be covered under my commercial or any other insurance,' said Ellis, who advocates for other former trial participants. Even if companies still make replacement parts for older devices, she added, 'availability and accessibility are entirely different things,' given most people can't afford continued care without insurance coverage. Seeger, whose device was implanted in 2012 at Emory, said she went without a working device for around four months when the insurance coverage her wife's job at Emory provided wouldn't pay for battery replacement surgery. Neither would Medicare, which generally only covers DBS for FDA-approved uses. With her research team at Emory advocating for her, Seeger ultimately got financial help from the hospital's indigent care program and paid a few thousand dollars out of pocket. She now has a rechargeable battery, and the device has been working well. But at any point, she said, that could change. Federal cuts stall solutions Lázaro-Muñoz hoped his work would protect people like Seeger and Ellis. 'We should do whatever we can as a society to be able to help them maintain their health,' he said. Lázaro-Muñoz's project received about $987,800 from the National Institute of Mental Health in the 2023 and 2024 fiscal years and was already underway when he was notified of the NIH funding cut in May. He declined to answer questions about it. Ellis said any delay in addressing the thorny issues around experimental brain devices hurts patients. Planning at the beginning of a clinical trial about how to continue treatment and maintain devices, she said, would be much better than depending on the kindness of researchers and the whims of insurers. 'If this turns off, I get sick again. Like, I'm not cured,' she said. 'This is a treatment that absolutely works, but only as long as I've got a working device.' ____ The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Department of Science Education and the Robert Wood Johnson Foundation. The AP is solely responsible for all content. Solve the daily Crossword

NIH cuts spotlight a hidden crisis facing patients with experimental brain implants
NIH cuts spotlight a hidden crisis facing patients with experimental brain implants

San Francisco Chronicle​

time13 hours ago

  • San Francisco Chronicle​

NIH cuts spotlight a hidden crisis facing patients with experimental brain implants

Carol Seeger finally escaped her debilitating depression with an experimental treatment that placed electrodes in her brain and a pacemaker-like device in her chest. But when its batteries stopped working, insurance wouldn't pay to fix the problem and she sank back into a dangerous darkness. She worried for her life, asking herself: 'Why am I putting myself through this?' Seeger's predicament highlights a growing problem for hundreds of people with experimental neural implants, including those for depression, quadriplegia and other conditions. Although these patients take big risks to advance science, there's no guarantee that their devices will be maintained — particularly after they finish participating in clinical trials — and no mechanism requiring companies or insurers to do so. A research project led by Gabriel Lázaro-Muñoz, a Harvard University scientist, aimed to change that by creating partnerships between players in the burgeoning implant field to overcome barriers to device access and follow-up care. But the cancellation of hundreds of National Institutes of Health grants by the Trump administration this year left the project in limbo, dimming hope for Seeger and others like her who wonder what will happen to their health and progress. An ethical quagmire Unlike medications, implanted devices often require parts, maintenance, batteries and surgeries when changes are needed. Insurance typically covers such expenses for federally approved devices considered medically necessary, but not experimental ones. A procedure to replace a battery alone can cost more than $15,000 without insurance, Lázaro-Muñoz said. While companies stand to profit from research, 'there's really nothing that helps ensure that device manufacturers have to provide any of these parts or cover any kind of maintenance,' said Lázaro-Muñoz. Some companies also move on to newer versions of devices or abandon the research altogether, which can leave patients in an uncertain place. Medtronic, the company that made the deep brain stimulation, or DBS, technology Seeger used, said in a statement that every study is different and that the company puts patient safety first when considering care after studies end. People consider various possibilities when they join a clinical trial. The Food and Drug Administration requires the informed consent process to include a description of 'reasonably foreseeable risks and discomforts to the participant,' a spokesperson said. However, the FDA doesn't require trial plans to include procedures for long-term device follow-up and maintenance, although the spokesperson stated that the agency has requested those in the past. While some informed consent forms say devices will be removed at a study's end, Lázaro-Muñoz said removal is ethically problematic when a device is helping a patient. Plus, he said, some trial participants told him and his colleagues that they didn't remember everything discussed during the consent process, partly because they were so focused on getting better. Brandy Ellis, a 49-year-old in Boynton Beach, Florida, said she was desperate for healing when she joined a trial testing the same treatment Seeger got, which delivers an electrical current into the brain to treat severe depression. She was willing to sign whatever forms were necessary to get help after nothing else had worked. 'I was facing death,' she said. 'So it was most definitely consent at the barrel of a gun, which is true for a lot of people who are in a terminal condition.' Patients risk losing a treatment of last resort Ellis and Seeger, 64, both turned to DBS as a last resort after trying many approved medications and treatments. 'I got in the trial fully expecting it not to work because nothing else had. So I was kind of surprised when it did,' said Ellis, whose device was implanted in 2011 at Emory University in Atlanta. 'I am celebrating every single milestone because I'm like: This is all bonus life for me.' She's now on her third battery. She needed surgery to replace two single-use ones, and the one she has now is rechargeable. She's lucky her insurance has covered the procedures, she said, but she worries it may not in the future. 'I can't count on any coverage because there's nothing that says even though I've had this and it works, that it has to be covered under my commercial or any other insurance,' said Ellis, who advocates for other former trial participants. Even if companies still make replacement parts for older devices, she added, 'availability and accessibility are entirely different things,' given most people can't afford continued care without insurance coverage. Seeger, whose device was implanted in 2012 at Emory, said she went without a working device for around four months when the insurance coverage her wife's job at Emory provided wouldn't pay for battery replacement surgery. Neither would Medicare, which generally only covers DBS for FDA-approved uses. With her research team at Emory advocating for her, Seeger ultimately got financial help from the hospital's indigent care program and paid a few thousand dollars out of pocket. She now has a rechargeable battery, and the device has been working well. But at any point, she said, that could change. Federal cuts stall solutions Lázaro-Muñoz hoped his work would protect people like Seeger and Ellis. 'We should do whatever we can as a society to be able to help them maintain their health,' he said. Lázaro-Muñoz's project received about $987,800 from the National Institute of Mental Health in the 2023 and 2024 fiscal years and was already underway when he was notified of the NIH funding cut in May. He declined to answer questions about it. Ellis said any delay in addressing the thorny issues around experimental brain devices hurts patients. Planning at the beginning of a clinical trial about how to continue treatment and maintain devices, she said, would be much better than depending on the kindness of researchers and the whims of insurers. 'If this turns off, I get sick again. Like, I'm not cured,' she said. 'This is a treatment that absolutely works, but only as long as I've got a working device.'

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store