logo
Chimps ‘catch' yawns from a robot — and think it's time for a rest

Chimps ‘catch' yawns from a robot — and think it's time for a rest

Times05-06-2025

When robots attain sentience and rise up to take over the world, the chances are that chimpanzees will find the whole thing rather boring.
Or at least, this is how it could appear, after scientists found new proof that yawning can be contagious — and believe they may have finally figured out why. They did this via the unusual method of showing that chimps can 'catch' yawns from robots that have been programmed to mimic human facial expressions.
Scientists remain puzzled by the contagious nature of yawning and are unsure how or why it evolved in a number of animal species that live in social groups, including mammals and even some fish.
The chimpanzee study provided new proof that yawning could be contagious
ALAMY
Studies have found that more than two thirds of humans end up yawning after seeing someone else do the same, and that yawns can even be contagious between species, for example when a dog yawns after seeing its owner do the same.
Some theories suggest that seeing a yawn triggers wiring in the brain known as mirror neurons, which not only fire when the body carries out a particular action but also when you witness someone else performing that action. Catching yawns from others may therefore play a role in a phenomenon known as 'social mirroring', used as a tool to display empathy with your companions.
Scientists now think, however, that the brain may see someone else yawning and interpret it as a sign to take a rest, after their study found that chimps not only yawn when seeing a robot do the same, but also then lie down.
• King of the swingers: chimps drum like jazz musicians
Researchers from City St George's university in London programmed a humanoid robotic head with lifelike skin and facial features to yawn as humans do. They exposed 14 adult chimps aged between 10 and 33 at a sanctuary in Spain to the 'yawnbot', showing them a range of expressions including yawning, 'gaping' and a neutral face, with each lasting ten seconds.
The 'yawnbot' used in the study
CITY ST GEORGE'S, UNIVERSITY OF LONDON
The study, published in the journal Scientific Reports, found that 'chimpanzees will both yawn and lie down in response to yawns made by an android, suggesting that it may act as a cue to rest rather than simply triggering an automatic response'.
After a large yawn, the chimps tended to yawn too and would then 'gather bedding materials before lying down'.
It is the first time that yawning has been shown to be contagious from an inanimate object and shows just how susceptible non-human primates are to such triggers.
They found that yawning not only prompts someone to mimic the action, but sends the message that it is time for bed, suggesting that yawning had 'rest-related inferences for the chimpanzees'.
It is possible that yawning can help a social group to co-ordinate their sleep cycles.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

‘It's something that happens': are we doing enough to save Earth from a devastating asteroid strike?
‘It's something that happens': are we doing enough to save Earth from a devastating asteroid strike?

The Guardian

time10 hours ago

  • The Guardian

‘It's something that happens': are we doing enough to save Earth from a devastating asteroid strike?

It is a scenario beloved of Hollywood: a huge asteroid, several miles wide, is on a collision course with Earth. Scientists check and recheck their calculations but there is no mistake – civilisation is facing a cataclysmic end unless the space rock can be deflected. It may sound like science fiction, but it is a threat that is being taken seriously by scientists. Earlier this year, researchers estimated that asteroid YR4 2024 had a 3.1% chance of hitting Earth in 2032, before revising that likelihood down to 0.0017%. This week, new data suggested it was more likely to hit the moon, with a probability of 4.3%. If that happens, the 53- to 67-metre (174ft-220ft) asteroid previously called a 'city killer' will launch hundreds of tonnes of debris towards our planet, posing a risk to satellites, spacecraft and astronauts. Before that, in April 2029, 99942 Apophis – an asteroid larger than the Eiffel Tower – will be visible to the naked eye when it passes within 32,000km of Earth. This attention-grabbing close encounter has prompted the UN to designate 2029 as the international year of planetary defence. When it comes to apocalyptic asteroid strikes, there is precedent, of course. Most scientists believe such an event hastened the demise of non-avian dinosaurs 66m years ago. 'This is something that happens,' said Colin Snodgrass, a professor of planetary astronomy at the University of Edinburgh. 'Not very often, but it is something that happens. And it's something that we could potentially do something about.' As Chris Lintott, a professor of astrophysics at the University of Oxford, told the UK parliament's science, innovation and technology committee this week, the risk posed by an asteroid originating beyond our solar system is minimal. Instead, he said, the greater threat comes from those in our cosmic back yard. 'Most asteroids in the solar system exist in the asteroid belt, which is between Mars and Jupiter, but they become disrupted, usually by encounters with either of those planets, and they can move into orbits that cross the Earth,' said Lintott, who presents the long-running BBC astronomy series The Sky at Night. 'Then it's just a case of whether we're in the wrong place at the wrong time.' The chances of an enormous asteroid – the type that did for the dinosaurs – hitting Earth is admittedly low. 'We think there's one of these every 10m to 100m years, probably,' Lintott told the Guardian. 'So I think you'd be right to ignore that when you decide whether to get up on a Thursday morning or not.' Snodgrass said there were 'precisely four' asteroids big enough and close enough to Earth to be considered 'dino-killers', and added: 'We know where they are, and they're not coming anywhere near us.' But damage can also be done by smaller asteroids. According to Nasa, space rocks measuring about one to 20 metres across collided with Earth's atmosphere resulting in fireballs 556 times over 20 years. Many collisions have occurred over the oceans, but not all. 'Chelyabinsk is the best example,' Lintott said. In 2013, a house-sized space rock – thought to have been about 20 metres across – exploded in the air above the Russian city with a force of nearly 30 Hiroshima bombs, producing an airburst that caused significant damage and hundreds of injuries, mostly from broken glass. Less dramatically, in February 2021 a space rock thought to have been just tens of centimetres across broke up in Earth's atmosphere, with fragments landing in the Cotswold town of Winchcombe in the UK. Thankfully, the damage was confined to a splat mark on a driveway. The types of asteroids we should perhaps be most concerned about are those about 140 metres across. According to Nasa, asteroids around that size are thought to hit Earth about once every 20,000 years and have the potential to cause huge destruction and mass casualties. The space agency has a congressional mandate to detect and track near-Earth objects of this size and larger, and a suite of new technological advances are helping them do just that. On Monday, the first images from the Vera C Rubin observatory in Chile were released to the public. This telescope is expected to more than triple the number of known near-earth objects, from about 37,000 to 127,000, over a 10-year period. In just 10 hours of observations, it found seven previously unspotted asteroids that will pass close to the Earth – though none are expected to hit. Also in the offing, though not planned for launch before 2027, is Nasa's near-Earth object (Neo) surveyor. Armed with an array of infrared detectors, this is 'the first space telescope specifically designed to detect asteroids and comets that may be potential hazards to Earth', the agency says. Lintott said: 'Between those two, we should find everything down to about 140 metres.' He said such observations should give scientists up to 10 years' warning of a potential collision. The European Space Agency (Esa) is planning a near-Earth object mission in the infrared (Neomir) satellite. Slated for launch in the early 2030s, this will help detect asteroids heading towards Earth that are at least 20 metres in diameter and obscured by the sun. Assessing the emerging capabilities, Edward Baker, the planetary defence lead at the UK's National Space Operations Centre (NSpOC) at RAF High Wycombe, said: 'I think we're in a good place. I can't see a situation like [the film] Don't Look Up materialising at all – though I wouldn't mind being portrayed by Leonardo DiCaprio.' As our ability to spot near-Earth asteroids increases, Lintott said, we should get used to hearing about asteroids like YR4 2024, which initially seem more likely to hit Earth before the risk rapidly falls towards zero. He described the shifting probabilities as similar to when a footballer takes a free kick. 'The moment they kick it, [it looks like] it could go anywhere,' he said. 'And then as it moves, you get more information. So you're like: 'Oh, it might go in the goal,' and then it inevitably becomes really clear that it's going to miss.' Of course, scientists aren't just monitoring the risks to Earth. They are also making plans to protect it. In 2022, Nasa crashed a spacecraft into a small, harmless asteroid called Dimorphos that orbits a larger rock called Didymos to test whether it would be possible to shift its path. The Dart mission was a success, reducing Dimorphos's 12-hour orbit around Didymos by 32 minutes. In 2024, Esa launched a follow-up to Nasa's Dart mission, called Hera. This will reach Dimorphos in 2026 and carry out a close-up 'crash site investigation'. It will survey the Dart impact crater, probe how effectively momentum was transferred in the collision and record a host of other measurements. Esa hopes this will provide crucial insights that can be used to make deliberate Dart-style impacts a reliable technique for safeguarding Earth. 'Dart was much more effective than anyone expected it to be,' Lintott said. 'And presumably that's something to do with the structure of the asteroid. I think we need to know whether Dart just got lucky with its target, or whether all near-Earth asteroids are like this.' For the most part, scientists say the threat of an asteroid strike does not keep them up at night. 'We're safer than we've ever been and we're about to get a lot safer, because the more of these things we find, the more we can spot them on the way in,' Lintott said. As Esa has quipped on its merchandise: 'Dinosaurs didn't have a space agency.'

Why cats prefer sleeping on their left side
Why cats prefer sleeping on their left side

Telegraph

timea day ago

  • Telegraph

Why cats prefer sleeping on their left side

Cats prefer to sleep on their left side to protect themselves from predators, a study has found. The pets sleep for up to 16 hours a day and often curl up or stretch out for a snooze in opportune places. But the way the animal settles down is not random, and there is an evolutionarily hard-wired logic underpinning it, according to a study from the Ruhr University Bochum in Germany. Scientists found cats lie on their left side around two-thirds of the time, which shows that it was done deliberately. They looked at clips on YouTube of more than 400 sleeping cats and logged which side they were sleeping on. Data revealed that 266 of the cats (66.5 per cent) were on their left side, leaving scientists to conclude this was a survival trait from their history in the wild. Sleeping on their left side means when they wake, their left eye is able to see the local area unobstructed by the cat's own body. This visual information is then processed by the right side of the brain. This hemisphere is what processes threats and is responsible for escaping danger as well as knowing an individual animal's position. This puts the cat at an advantage compared to if it was to sleep on its right side – when the information is processed by the left side of the brain, which is less specialised to aid a swift escape. Anti-predator vigilance This leftward preference is just one of the many ways in which cats protect themselves. 'Sleep is one of the most vulnerable states for an animal, as anti-predator vigilance is drastically reduced, especially in deep sleeping phases,' according to the study. 'Domestic cats are both predators and prey (e.g. for coyotes) and sleep an average of 12–16 hours a day. 'Therefore, they spend almost 60-65% of their lifetime in a highly vulnerable state. To reduce predation risks, cats prefer to rest in elevated positions so that predators are more visible to them and the cats, in turn, are more visually concealed from predators. 'In such a spot, predators can access cats only from below. Thus, their preference for resting in an elevated position can provide comfort, safety, and a clear vantage point for monitoring their environments. 'We hypothesised that a lateralised sleeping position further increases the chances of quickly detecting predators (or to identify careless prey) when awoken.' Threat-processing leftward bias Pregnant cows are known to prefer their left side while sleeping for a similar reason, experts believe. The scientists also found that the pawedness of a cat, whether it preferred its left or right side, is likely not to blame for the sleeping preference. A 2017 study found that male cats tend to prefer their left paws and females are more right-paw dominant. 'We are inclined to believe that the significant leftward bias in sleeping position in cats may have been evolutionarily driven by hemispheric asymmetries of threat processing,' the scientists add in their paper, published in the journal Current Biology.

Why our chins remain an evolutionary mystery
Why our chins remain an evolutionary mystery

The Independent

timea day ago

  • The Independent

Why our chins remain an evolutionary mystery

Scientists are still trying to understand the evolutionary reasons behind unique human features, such as the chin and the relative size of testicles. The concept of convergent evolution, where a feature evolves multiple times independently, serves as a natural experiment to determine the purpose of body parts. Analysis of testicle size across various mammals, including monkeys, gorillas, chimps, and dolphins, reveals a consistent correlation between larger testicles and promiscuous mating behaviors. This correlation suggests that larger testicles evolved to facilitate sperm competition in species with multiple partners, with human testicle size falling in the middle. The human chin remains an evolutionary mystery because its uniqueness among mammals, including Neanderthals, prevents the use of convergent evolution to test hypotheses about its purpose.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store