
Velociraptor's new cousin is a raptor unlike any seen before
Sometime before 2010, in the red sands of Mongolia's Gobi Desert brimming with fossils, poachers excavated and stole the exquisite skeleton of a carnivorous dinosaur.
They smuggled the fossil out of the country and onto the black market. It passed through private collections in Japan and England and was eventually acquired by the French fossil company Eldonia. In 2016, one of the fossil's owners had the dinosaur's skull and four vertebrae CT-scanned at a Belgian museum, but sometime later the head and neck went missing. Their whereabouts remain unknown to scientists. Negotiations between the fossil company, paleontologists, and government officials led to the return of the dinosaur's body to Mongolia, where it could be cared for and studied, a raptor unlike any seen before.
Now, this headless, extra-sharp relative of Velociraptor finally has a name: Shri rapax.
The roughly six-foot-long, turkey-sized dinosaur wandered a prehistoric desert more than 71 million years ago. Like Velociraptor, which was also found in Mongolia, Shri is a dromaeosaur. This predatory dinosaur group includes Deinonychus, Utahraptor, and other feathery carnivores with large, hyperextendable claws on their second toes.
"I was so surprised to find such an unexpected dromaeosaur in the same geological setting of the iconic Velociraptor," says Andrea Cau an independent paleontologist from Italy.
Cau and his colleagues published a paper on July 13 in the journal Historical Biology describing the new species. The discovery is part of a growing number of raptor-like dinosaurs found in Mongolia, revealing an unexpected diversity of species and body types in this group, such as the goose-necked and slender Halszkaraptor escuilliei and Natovenator polydontus. This cast was created from a CT-scan of the dinosaur's skull that was conducted in 2016. The real fossilized skull's location is still a mystery to scientists. Photograph by Thierry Hubin, Royal Belgian Institute of Natural Sciences Shri rapax's claws were larger than the claws that its famous relative, Velociraptor, had on its hands. Photograph by Thierry Hubin, Royal Belgian Institute of Natural Sciences
Despite its close relationship to the Hollywood-famous Velociraptor, Shri was a very different dinosaur. A cast of its skull, which was made based off the 2016 CT-scan as the actual fossil skull is still missing, indicates Shri had a deeper and shorter snout. The finding hints that this raptor had a stronger bite than its relative.
"Other differences, such as a relatively short snout, proportionally long neck, and short tail indicate that these two relatives had different ecological preferences," says Tsogtbaatar Chinzorig, a paleontologist at the North Carolina Museum of Natural Sciences and a coauthor of the study.
Its arm bones are more robust and stockier, tipped with large, curved claws. It also had stout hands that imply a strong grip. Precisely how Shri used its arms and claws is unclear, though the researchers suggest it may have grappled with and grasped other dinosaurs like the horned herbivore Protoceratops. Bitten Protoceratops bones and a famous fossil of Velociraptor and Protoceratops locked in fossil combat, called the "Fighting Dinosaurs," hint that the pig-like horned dinosaurs were prey for dromaeosaurs like Shri.
Michael Pittman, a paleontologist at the Chinese University of Hong Kong who was not involved in the research, says the authors' hypothesis is reasonable, and that biomechanical studies of the dinosaur's arms can potentially test the idea. He also calls the specimen, "beautiful and well-preserved."
The likelihood Shri rapax and Velociraptor lived alongside each other points to a phenomenon called "niche partitioning." Closely related species can sometimes share the same landscape when they have different dietary preferences and behaviors, like how the island of Madagascar hosts many different lemur species that live in different habitats and eat different foods.
Evolving different specializations allow related animals to divide habitats in different ways, boosting biodiversity. In the case of the dinosaurs, the anatomical differences between Shri and Velociraptor indicate that the carnivores were likely also part of such an ecological interplay. Returning Shri rapax home
Because Shri's skeleton was poached and sold with no geological information, paleontologists are unsure exactly from where the dinosaur was excavated, beyond its clear origin from Mongolia's Djadokhta Formation. The fact that scientists have been able to study, describe, and begin to understand Shri rapax is a victory for paleontology and an effort to push back against black market fossil dealings.
"This case highlights yet another instance of fossil poaching," Chinzorig says, "part of a long-standing pattern of illegal smuggling of fossils from the Mongolian Gobi over the decades."
It's essential that such fossils are returned, Chinzorig says, both to build scientific knowledge about the prehistoric past and to respect Mongolia's fossil heritage. If the smuggled fossil had remained in private hands, scientists would not know this new dinosaur, its relationships, or anything about the role it played in its prehistoric ecosystem.
"Scientific value aside," Cau adds, "I am really happy to give some help in returning these dinosaurs home." And by introducing Shri rapax to the world, the paleontologists may, with luck, help return its missing head home.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
2 days ago
- Yahoo
Why does your mind goes 'blank'? New brain scans reveal the surprising answer
When you buy through links on our articles, Future and its syndication partners may earn a commission. You look up from your phone screen and suddenly realize you weren't thinking about anything. It's not a lapse in memory or a daydream; it's literally a moment when you're not thinking of anything at all. Neuroscientists have a term for it — mind blanking — which they define as a brief, waking state when conscious thought simply stops. Scientists used to think our waking minds were always generating thoughts, but recent research shows that's not the case. Mind blanking is now recognized as a distinct conscious state associated with changes in arousal, which in neuroscience refers to alertness and responsiveness to stimuli. Studying this curious state could shed light on how consciousness works, some researchers think. "For some, it's kind of a blip in the mind, and suddenly there's nothing," Thomas Andrillon, a neuroscience researcher at the French National Institute of Health and Medical Research and the Paris Brain Institute, told Live Science. "But not with that feeling, 'There was something that I forgot.'" Often, people are unaware of the lapse until they are prompted to answer "What were you just thinking about?" "When we interrupt them randomly," Andrillon continued, "it's clear it's more frequent than what people realize." Although the frequency of this phenomenon varies among individuals, various studies suggest about 5% to 20% of a person's waking hours may be spent in this state. Related: Super-detailed map of brain cells that keep us awake could improve our understanding of consciousness An investigation of 'mind blanking' In a study published in the July issue of the journal Trends in Cognitive Sciences, Andrillon and his team used electroencephalography (EEG) — which involves placing electrodes on participants' heads — to measure brain activity while people experienced lapses in attention, such as mind wandering or mind blanking. Mind wandering occurs when people's thoughts drift to tasks or ideas unrelated to the one at hand, while mind blanking involves the absence of all thought. While wearing EEG caps, participants watched numbers flash rapidly on a display screen. They were instructed to press a button every time a number appeared except for 3, which they were told to skip. This task tests how quickly people react when a response is required and how well they can inhibit that response, when necessary. Because most of the presented numbers required a response, people often pressed the button by mistake when they saw a 3 onscreen. The researchers paused the task once a minute to ask what the participants were thinking, finding that they were either focused on the task, their mind was wandering, or they were experiencing a "mind blank." Participants pressed the button more quickly when their minds were wandering, whereas their responses slowed noticeably during mind blanking, suggesting these two mental states are distinct. Brain activity told a similar story. The EEG data showed that the participants' brain activity tended to slow down slightly more when their minds were blank than when they were wandering, compared to the baseline of their paying attention. 'The connectivity changes as if the inner workings of the brain were specific, in a way, to that state," Andrillion said. EEG data is great for tracking rapid changes in brain activity, but it can't pinpoint exactly which brain regions are involved. That's in part because it records brain waves through the skull, and the signals blur as they make their way through the brain tissue, fluid and bone. Andrillon explained it's like listening through a wall. You can tell if a group inside is noisy or quiet, but you can't tell who is talking. The EEG results from the study suggest that during mind blanking, the brain's activity slows down globally, but the technique couldn't identify specific areas. That's where functional MRI (fMRI) came in. Related: 'Hyper-synchronized' brain waves may explain why different psychedelics have similar effects, rat study reveals Hypersynchronization fMRI provides a clearer view of which regions are active and how they interact, but its tracking speed is slower because the technique tracks bloodflow, rather than directly following brain signals. fMRI is more like peeking into the room and seeing who's talking to whom, but not knowing precisely when, Andrillion said. Study co-author Athena Demertzi, a neuroscience researcher at the GIGA Institute-CRC Human Imaging Center at the University of Liège in Belgium, led the fMRI portion of the study. As people rested in an fMRI scanner with no particular task at hand, Demertzi and her team periodically asked what they were thinking. The results were surprising: when people reported mind blanking, their brains showed hyperconnectivity — a global, synchronized activity pattern similar to that seen in deep sleep. Typically, when we are awake and conscious, our brain regions are connected and communicating but not synchronized, as they appear to be during mind blanks. "What we think happens in the case of mind blanking is that the brain is pushed a little bit toward the side of synchronization," Andrillon said. "That might be enough to disrupt these sweet spots of consciousness, sending our mind to blank." Research into mind blanking is still in its early stages, but Andrillon and Demertzi noted that its similarity to brain patterns seen during deep sleep may offer an important clue as to its function. Deep sleep, also known as slow-wave sleep, coincides with important cleanup work for the brain. It clears away accumulated waste, cools the brain, conserves energy and helps reset the system after a full day of mental activity. RELATED STORIES —Why do we forget things we were just thinking about? —Electronic' scalp tattoos could be next big thing in brain monitoring —'Hyper-synchronized' brain waves may explain why different psychedelics have similar effects, rat study reveals Andrillon and Demertzi suggested mind blanking may act as a mini-reset while we're awake. Demertzi said it's like "taking five to steam off" or "to cool your head." Early studies in Demertzi's lab suggest sleep-deprived people report more mind blanks, adding support to this idea. Both researchers stressed that this state is likely a way for the brain to maintain itself, though "it's not ideal for performance," Andrillon said. Andrillon believes it's possible but unlikely that there are people who have never experienced mind blanking. Detecting a mind blank can be a challenge. "It can require being interrupted," Andrillon said, "to realize, 'OK, actually, there was no content.'"


UPI
4 days ago
- UPI
You might inhale ight Inhale 68,000 microplastics per day
The French team used high tech equipment to measure concentrations of microplastics in 16 air samples from their own apartments and cars. Photo by Adobe Stock/HealthDay July 31 (UPI) -- Scientists say the average person may be inhaling microscopic, lung-penetrating plastic particles at a rate that's 100 times what was previously assumed: 68,000 per day. "Everywhere we look, we find microplastics, even in the air we breathe inside our homes and cars," said the French team that conducted the study. "The biggest concern is how small these particles are, completely invisible to the naked eye. We inhale thousands of them every day without even realizing it." The study was led by Nadiia Yakovenko of the University of Toulouse and published July 30 in the journal PLOS One. As the researchers noted, prior research has sought to estimate how many microplastics people breathe in daily. But those studies focused on relatively large particles -- about 20 to 200 micrometers in diameter. Yakovenko's team tracked even more minute plastic particles, ranging from 1 to 10 micrometers across - far smaller than a human hair. Their incredibly small size means these invaders can penetrate deep into the lungs. The French team used high tech equipment to measure concentrations of microplastics in 16 air samples from their own apartments and cars. They found that in their apartments, an average of 528 microplastic particles per cubic meter floated in the air they breathed. That rose to 2,238 particles per cubic meter for car interiors, tested under normal driving conditions. Most (94%) of these particles were very tiny -- between 1 to 10 micrometers in diameter. Yakovenko's team estimated that people breathe in 3,200 larger (10 to 300 micrometers in diameter) microplastic particles per day and 68,000 smaller ones (1 to 10 micrometers). The findings point to "indoor air as a major and previously underestimated exposure route of fine particulate microplastic inhalation," the researchers said. Just how harmful are these microplastics? The jury is still out on that. However, in a study presented in April at a meeting in Chicago of the American College of Cardiology, researchers from Case Western Reserve School of Medicine in Cleveland reported that high blood pressure, diabetes and stroke rates are higher in coastal or lakefront areas of the U.S. with greater concentrations of microplastics in the environment. Research presented at meetings is typically considered preliminary, until published in a peer-reviewed journal. Microplastics might even be harming the brain. In a study published in 2024, researchers in Germany and Brazil found that 8 of 15 autopsied adults had microplastics detected within their brain's smell centers, the olfactory bulb. Particles have also been detected in human lungs, intestines, liver, blood and testicles, and even in semen. More information Find out more about microplastics at Stanford University. Copyright © 2025 HealthDay. All rights reserved.
Yahoo
5 days ago
- Yahoo
Velociraptor's new cousin is a raptor unlike any seen before
Sometime before 2010, in the red sands of Mongolia's Gobi Desert brimming with fossils, poachers excavated and stole the exquisite skeleton of a carnivorous dinosaur. They smuggled the fossil out of the country and onto the black market. It passed through private collections in Japan and England and was eventually acquired by the French fossil company Eldonia. In 2016, one of the fossil's owners had the dinosaur's skull and four vertebrae CT-scanned at a Belgian museum, but sometime later the head and neck went missing. Their whereabouts remain unknown to scientists. Negotiations between the fossil company, paleontologists, and government officials led to the return of the dinosaur's body to Mongolia, where it could be cared for and studied, a raptor unlike any seen before. Now, this headless, extra-sharp relative of Velociraptor finally has a name: Shri rapax. The roughly six-foot-long, turkey-sized dinosaur wandered a prehistoric desert more than 71 million years ago. Like Velociraptor, which was also found in Mongolia, Shri is a dromaeosaur. This predatory dinosaur group includes Deinonychus, Utahraptor, and other feathery carnivores with large, hyperextendable claws on their second toes. "I was so surprised to find such an unexpected dromaeosaur in the same geological setting of the iconic Velociraptor," says Andrea Cau an independent paleontologist from Italy. Cau and his colleagues published a paper on July 13 in the journal Historical Biology describing the new species. The discovery is part of a growing number of raptor-like dinosaurs found in Mongolia, revealing an unexpected diversity of species and body types in this group, such as the goose-necked and slender Halszkaraptor escuilliei and Natovenator polydontus. Stronger bite, bigger claws Despite its close relationship to the Hollywood-famous Velociraptor, Shri was a very different dinosaur. A cast of its skull, which was made based off the 2016 CT-scan as the actual fossil skull is still missing, indicates Shri had a deeper and shorter snout. The finding hints that this raptor had a stronger bite than its relative. "Other differences, such as a relatively short snout, proportionally long neck, and short tail indicate that these two relatives had different ecological preferences," says Tsogtbaatar Chinzorig, a paleontologist at the North Carolina Museum of Natural Sciences and a coauthor of the study. Its arm bones are more robust and stockier, tipped with large, curved claws. It also had stout hands that imply a strong grip. Precisely how Shri used its arms and claws is unclear, though the researchers suggest it may have grappled with and grasped other dinosaurs like the horned herbivore Protoceratops. Bitten Protoceratops bones and a famous fossil of Velociraptor and Protoceratops locked in fossil combat, called the "Fighting Dinosaurs," hint that the pig-like horned dinosaurs were prey for dromaeosaurs like Shri. Michael Pittman, a paleontologist at the Chinese University of Hong Kong who was not involved in the research, says the authors' hypothesis is reasonable, and that biomechanical studies of the dinosaur's arms can potentially test the idea. He also calls the specimen, "beautiful and well-preserved." The likelihood Shri rapax and Velociraptor lived alongside each other points to a phenomenon called "niche partitioning." Closely related species can sometimes share the same landscape when they have different dietary preferences and behaviors, like how the island of Madagascar hosts many different lemur species that live in different habitats and eat different foods. Evolving different specializations allow related animals to divide habitats in different ways, boosting biodiversity. In the case of the dinosaurs, the anatomical differences between Shri and Velociraptor indicate that the carnivores were likely also part of such an ecological interplay. Returning Shri rapax home Because Shri's skeleton was poached and sold with no geological information, paleontologists are unsure exactly from where the dinosaur was excavated, beyond its clear origin from Mongolia's Djadokhta Formation. The fact that scientists have been able to study, describe, and begin to understand Shri rapax is a victory for paleontology and an effort to push back against black market fossil dealings."This case highlights yet another instance of fossil poaching," Chinzorig says, "part of a long-standing pattern of illegal smuggling of fossils from the Mongolian Gobi over the decades." It's essential that such fossils are returned, Chinzorig says, both to build scientific knowledge about the prehistoric past and to respect Mongolia's fossil heritage. If the smuggled fossil had remained in private hands, scientists would not know this new dinosaur, its relationships, or anything about the role it played in its prehistoric ecosystem. "Scientific value aside," Cau adds, "I am really happy to give some help in returning these dinosaurs home." And by introducing Shri rapax to the world, the paleontologists may, with luck, help return its missing head home. Solve the daily Crossword