Scientists Put a Tiny Elephant Inside a Living Cell
Scientists were able to 3D-print different microstructures inside live cells, including a delightfully tiny micro-elephant.
The team also printed barcodes and tiny lasers that could both be used to label cells for observation.
While the technology still needs some improvement, it could one day revolutionize how we study cells and their insides.
Ever since the popularity of 3D-printing skyrocketed in the mid-aughts, people have manufactured everything from chocolate to rocket fuel—and that list now includes a microscopic elephant inside of a living cell (which you can see here). Technology has really leveled up since 2005.
As new biological opportunities for 3D printing keep emerging, a team of researchers—from the J. Stefan Institute, University of Ljubljana, and CENN Nanocenter in Slovenia—have found a way to pull the process off within a cell's cytoplasm. They were successfully able to print not only an elephant, but several other impossibly small structures using a liqiud polymer and a hyperfocused petawatt laser.
What makes this more incredible is how, despite most of these polymers (known as photoresists) being toxic, there were cells that actually survived. Some even divided and took the embedded objects with them.
'Intracellular 3D printing offers an unprecedented degree of control over the cellular interior, allowing the integration of synthetic structures with native biological functions,' the team said in a study recently posted to the preprint server arXiv. 'This platform could allow for reconfiguration of cellular architecture, embed logic or mechanical components within the cytoplasm, and design cells with enhanced or entirely new properties.'
For this experiment, the team used a negative photoresist (a material that changes when exposed to certain wavelengths of energy), which became insoluble when exposed to light. It was also the most biocompatible formula possible. After a droplet of photoresist was injected into the cell, an object was printed using a process called two-photon photolithography, which involves targeting an area inside the droplet with a laserto create a microstructure. Anything zapped with two photons from the laser hardens, while any remaining photoresist that has not been lasered into a structure dissolves.
Along with the ironically tiny 10-micrometer elephant, the research team printed other microstructures, like barcodes and a sphere that acted as a micro-laser. The former could eventually allow scientists to track what is going on inside individual cells, and give experts much more detailed insight into cellular function than is currently possible. The latter could be produced in various sizes that all emit light slightly differently, labeling cells with specific light signatures.
Surviving cells continued to go on as if nothing had happened. When a few of them divided, the microstructure inside was passed down to one of the daughter cells. Viability was still an issue, however—even the biocompatible photoresist was still somewhat toxic, and injecting liquid polymer damaged the cell membrane and sometimes caused cell death. How likely cells were to survive depended on the type of cell, and in total, about half of the cells that had microstructures printed in them made it through the experiment.
The 3D-printed microstructures were amazingly precise, but there is an issue with structures which exceed the size of a photoresist droplet. The researchers think one solution to this problem could be using a water-soluble, hydrogel-based photoresist that spreads throughout the cell and provides more space. Being able to print anywhere inside a cell will make it possible to create a compartment isolating a particular part of that cell for observation.
'There are many possible applications of structures printed inside the cells, well beyond what has been shown here,' the team said. 'Especially interesting is the prospect of printing functional structures, which would change the properties of cells beyond what has been possible till now.'
You Might Also Like
The Do's and Don'ts of Using Painter's Tape
The Best Portable BBQ Grills for Cooking Anywhere
Can a Smart Watch Prolong Your Life?

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
16-07-2025
- Yahoo
Monster Black Hole Merger Is Most Massive Ever Seen
Physicists have detected the biggest ever merger of colliding black holes. The discovery has major implications for researchers' understanding of how such bodies grow in the Universe. 'It's super exciting,' says Priyamvada Natarajan, a theoretical astrophysicist at Yale University in New Haven, Connecticut, who was not involved in the research. The merger was between black holes with masses too big for physicists to easily explain. 'We're seeing these forbidden high-mass black holes,' she says. The discovery was made by the Laser Interferometer Gravitational-Wave Observatory (LIGO), a facility involving two detectors in the United States. It comes at a time when US funding for gravitational-wave detection faces devastating cuts. The results, released as a preprint on the arXiv server1, were presented at the GR-Amaldi gravitational-waves meeting in Glasgow, UK, on 14 July. [Sign up for Today in Science, a free daily newsletter] LIGO detects gravitational waves by firing lasers down long, L-shaped arms. Minuscule changes in arm length reveal the passage of gravitational waves through the planet. The waves are ripples in space-time, caused by massive bodies accelerating, such as when two inspiralling black holes or neutron stars merge. Hundreds of these mergers have been observed using gravitational waves since LIGO's first detection in 2015. But this latest detection, made in November 2023, is the biggest yet. By modelling the signal detected by LIGO, scientists have calculated that the event, dubbed GW231123, was caused by two black holes with masses of about 100 and 140 times that of the Sun merging to form a final black hole weighing in at some 225 solar masses. 'It's the most massive [merger] so far,' says Mark Hannam, a physicist at Cardiff University, UK, and part of the LVK Collaboration, a wider network of gravitational-wave detectors that encompasses LIGO, Virgo in Italy and KAGRA in Japan. It's 'about 50% more than the previous record holder', he says. Most of the events captured by LIGO involve stellar mass black holes — those ranging from a few to 100 times the mass of the Sun — which are thought to form when massive stars end their lives as supernovae. However, the two black holes involved in GW231123 fall in or near a predicted range, of 60–130 solar masses, at which this process isn't expected to work, with theories instead predicting that the stars should be blown apart. 'So they probably didn't form by this normal mechanism,' says Hannam. Instead, the two black holes probably formed from earlier merger events — hierarchical mergers of massive bodies that led to the event detected by LIGO, which is estimated to have happened 0.7 to 4.1 billion parsecs away (2.3—13.4 billion light years). It's like 'four grandparents merging into two parents merging into one baby black hole', says Alan Weinstein, a physicist at the California Institute of Technology in Pasadena and also part of the LVK Collaboration. Models of the black holes also suggest that they were spinning exceedingly fast — about 40 times per second, which is near the limit of what Einstein's general theory of relativity predicts black holes can reach while remaining stable. 'They're spinning very close to the maximal spin allowable,' says Weinstein. Both the spin and the mass could provide clues to how black holes grow in the Universe. One of the biggest questions in astronomy is how the largest black holes, the supermassive black holes found at the centres of galaxies such as the Milky Way, grew in the early cosmos. Although there is plenty of evidence for the existence of stellar mass black holes and supermassive black holes — those of more than a million solar masses — intermediate mass black holes in the range of 100 to 100,000 solar masses have been harder to find. 'We don't see them,' says Natarajan. The latest detection might tell us that 'these intermediate-mass black holes of several hundred solar masses play a role in the evolution of galaxies', says Hannam, perhaps through hierarchical mergers, which could increase the spin speed, as well as the mass, of the resulting black holes. 'Little by little, we're building up a list of the kind of black holes that are out there,' he says. That growth in knowledge could be hampered by the administration of US President Donald Trump and its proposed cuts to the US National Science Foundation, which runs LIGO. Under the proposal, one of LIGO's two gravitational-wave observatories would be shut down. At the time of this detection in November 2023, Virgo and KAGRA were not operational. Without two detectors, scientists would not have been sure that they had made a real detection of two merging black holes, says Hannam. 'Because we had two detectors, we saw the same blip at the same time,' he says. The closure of one of the observatories would be 'catastrophic', says Natarajan. 'This discovery would not be possible if one arm was turned off.' Planned upgrades to LIGO in the coming years, and the addition of new detectors around the world, including one in India, could greatly increase physicists' capabilities in gravitational-wave research, an area of astronomy that is still in its infancy. 'We're going to be seeing thousands of black holes in the next few years,' says Hannam. 'There's this huge investment that's been done, and it's only just beginning to pay off.' This article is reproduced with permission and was first published on July 15, 2025.
Yahoo
16-07-2025
- Yahoo
'Interstellar visitor' 3I/ATLAS could be the oldest comet ever seen — and could grow a spectacular tail later this year
When you buy through links on our articles, Future and its syndication partners may earn a commission. The mysterious "interstellar visitor" that was recently spotted whizzing through the solar system may be around 3 billion years older than our cosmic neighborhood, a new study suggests. If confirmed, the alien interloper would be the oldest comet ever seen from Earth. And, if it's made of what researchers think it is, it may also grow a spectacularly long tail in the coming months. 3I/ATLAS is an interstellar comet, potentially up to 15 miles (24 kilometers) across, that is currently shooting toward the sun at more than 130,000 mph (210,000 km/h). Once it passes its closest point to our home star, or perihelion, in late October, the extrasolar entity will begin its long journey back out of the solar system, before eventually leaving us behind forever. The cosmic visitor was discovered July 1 and was confirmed as an interstellar object by NASA less than 24 hours later. Ever since, the astronomical community has been racing to uncover as much as they can about the alien comet. In a new study, uploaded July 7 to the preprint server arXiv and presented July 11 at the Royal Astronomical Society's National Astronomy Meeting in Durham, England, researchers used a computer model to simulate where 3I/ATLAS may have originated from. The team found that the comet likely originates from the Milky Way's "thick disk" — a population of stars located above and below the main disk where the sun and a majority of our galaxy's stars reside. Most of the stars in this part of the galaxy are believed to be billions of years older than our solar system, and because comets are made up from the leftovers of the protoplanetary disks that surround new stars, it is highly likely that 3I/ATLAS could be just as old. Related: Watch newly discovered 'interstellar visitor' 3I/ATLAS shoot toward us in first livestream "Our statistical method suggests that 3I/ATLAS is very likely to be the oldest comet we have ever seen," study lead author Matthew Hopkins, a doctoral candidate at the University of Oxford in the U.K., said in a statement. However, the new findings have not yet been peer-reviewed, and more observations are needed to determine exactly how old the comet is. The study team used a novel computer program, known as the Ōtautahi-Oxford model, which helps predict where interstellar objects (ISOs) come from using data from the European Space Agency's Gaia space observatory. Hopkins designed the model while working toward completing his PhD, and he had only finished defending his doctoral thesis on the topic around a week before 3I/ATLAS was discovered, providing an immediate chance to put his theories to the test. "It's a fantastic opportunity to test our model on something brand new and possibly ancient," Hopkins said. Only two other ISOs have been discovered to date: 1I/'Oumuamua, an asteroid that was discovered in 2017; and 2I/Borisov, a comet spotted in 2019. Both 'Oumuamua and Comet Borisov entered the solar system head-on to the sun, relative to our home star's trajectory through the Milky Way, hinting they come from the galaxy's main disk. But 3I/ATLAS is coming at us side-on, meaning it has a totally different origin from the previous ISOs. "This is an object from a part of the galaxy we've never seen up close before," study co-author Chris Lintott, an astronomer at the University of Oxford, said in the statement. "We think there's a two-thirds chance this comet is older than the solar system, and that it's been drifting through interstellar space ever since," he added. As we collect more data about 3I/ATLAS, the researchers will continue to refine their model to further pinpoint where the alien interloper may have originated from. However, even then, there are limits to how precisely scientists can track its interstellar origins. "We probably won't ever be able to pin it down to a single star system," Aster Taylor, a graduate student at the University of Michigan who was not involved in the new study, previously told Live Science. Understanding where 3I/ATLAS came from can also help researchers predict how it will behave when it shoots past the sun later this year. Experts predict that planetary systems within the thick disk might have an abundance of water, meaning that 3I/ATLAS could be rich with water ice. If this is the case, it means the comet could likely grow a large cometary tail in the coming months, as the sun vaporizes its outer layers, the researchers wrote. RELATED STORIES —An interstellar object exploded over Earth in 2014, declassified government data reveal —1 million 'interstellar objects' — each larger than the Statue of Liberty — may lurk in the outer solar system —An interstellar visitor may have changed the course of 4 solar system planets, study suggests The cloud of ice, dust and gas that surrounds the comet, known as its coma, could also become much larger, allowing it to reflect more sunlight and appear much brighter to us, making it even more visually stunning as it approaches Earth. However, the interstellar comet won't be visible to the naked eye, meaning you will require a decent backyard telescope or a pair of stargazing binoculars to see it for yourself. The best time to see it will likely be in late 2025 and early 2026, the researchers wrote.


Scientific American
15-07-2025
- Scientific American
Monster Black Hole Merger Is Most Massive Ever Seen
Physicists have detected the biggest ever merger of colliding black holes. The discovery has major implications for researchers' understanding of how such bodies grow in the Universe. 'It's super exciting,' says Priyamvada Natarajan, a theoretical astrophysicist at Yale University in New Haven, Connecticut, who was not involved in the research. The merger was between black holes with masses too big for physicists to easily explain. 'We're seeing these forbidden high-mass black holes,' she says. The discovery was made by the Laser Interferometer Gravitational-Wave Observatory (LIGO), a facility involving two detectors in the United States. It comes at a time when US funding for gravitational-wave detection faces devastating cuts. The results, released as a preprint on the arXiv server 1, were presented at the GR-Amaldi gravitational-waves meeting in Glasgow, UK, on 14 July. On supporting science journalism If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today. Forbidden mass LIGO detects gravitational waves by firing lasers down long, L-shaped arms. Minuscule changes in arm length reveal the passage of gravitational waves through the planet. The waves are ripples in space-time, caused by massive bodies accelerating, such as when two inspiralling black holes or neutron stars merge. Hundreds of these mergers have been observed using gravitational waves since LIGO's first detection in 2015. But this latest detection, made in November 2023, is the biggest yet. By modelling the signal detected by LIGO, scientists have calculated that the event, dubbed GW231123, was caused by two black holes with masses of about 100 and 140 times that of the Sun merging to form a final black hole weighing in at some 225 solar masses. 'It's the most massive [merger] so far,' says Mark Hannam, a physicist at Cardiff University, UK, and part of the LVK Collaboration, a wider network of gravitational-wave detectors that encompasses LIGO, Virgo in Italy and KAGRA in Japan. It's 'about 50% more than the previous record holder', he says. Most of the events captured by LIGO involve stellar mass black holes — those ranging from a few to 100 times the mass of the Sun — which are thought to form when massive stars end their lives as supernovae. However, the two black holes involved in GW231123 fall in or near a predicted range, of 60–130 solar masses, at which this process isn't expected to work, with theories instead predicting that the stars should be blown apart. 'So they probably didn't form by this normal mechanism,' says Hannam. Instead, the two black holes probably formed from earlier merger events — hierarchical mergers of massive bodies that led to the event detected by LIGO, which is estimated to have happened 0.7 to 4.1 billion parsecs away (2.3—13.4 billion light years). It's like 'four grandparents merging into two parents merging into one baby black hole', says Alan Weinstein, a physicist at the California Institute of Technology in Pasadena and also part of the LVK Collaboration. Models of the black holes also suggest that they were spinning exceedingly fast — about 40 times per second, which is near the limit of what Einstein's general theory of relativity predicts black holes can reach while remaining stable. 'They're spinning very close to the maximal spin allowable,' says Weinstein. Both the spin and the mass could provide clues to how black holes grow in the Universe. One of the biggest questions in astronomy is how the largest black holes, the supermassive black holes found at the centres of galaxies such as the Milky Way, grew in the early cosmos. Although there is plenty of evidence for the existence of stellar mass black holes and supermassive black holes — those of more than a million solar masses — intermediate mass black holes in the range of 100 to 100,000 solar masses have been harder to find. 'We don't see them,' says Natarajan. The latest detection might tell us that 'these intermediate-mass black holes of several hundred solar masses play a role in the evolution of galaxies', says Hannam, perhaps through hierarchical mergers, which could increase the spin speed, as well as the mass, of the resulting black holes. 'Little by little, we're building up a list of the kind of black holes that are out there,' he says. Cuts ahead That growth in knowledge could be hampered by the administration of US President Donald Trump and its proposed cuts to the US National Science Foundation, which runs LIGO. Under the proposal, one of LIGO's two gravitational-wave observatories would be shut down. At the time of this detection in November 2023, Virgo and KAGRA were not operational. Without two detectors, scientists would not have been sure that they had made a real detection of two merging black holes, says Hannam. 'Because we had two detectors, we saw the same blip at the same time,' he says. The closure of one of the observatories would be 'catastrophic', says Natarajan. 'This discovery would not be possible if one arm was turned off.' Planned upgrades to LIGO in the coming years, and the addition of new detectors around the world, including one in India, could greatly increase physicists' capabilities in gravitational-wave research, an area of astronomy that is still in its infancy. 'We're going to be seeing thousands of black holes in the next few years,' says Hannam. 'There's this huge investment that's been done, and it's only just beginning to pay off.'