
The 10 most powerful telescopes on Earth and in space transforming modern astronomy
powerful telescopes
are helping us explore them like never before. These advanced instruments drive the progress of
modern astronomy
, using radio, infrared, optical, and X-ray wavelengths to capture light from ancient galaxies, black holes, exoplanets, and other distant objects. Built in extreme environments and equipped with modern technology, they allow scientists to see far into space and look back in time. Each telescope on this list plays a vital role in uncovering how the universe began, how it changes, and what might exist beyond what we know.
Top 10 most powerful telescopes on Earth and in space
1. James Webb Space Telescope (JWST)
Launched in December 2021, the
James Webb Space Telescope
(JWST) is placed about 1.5 million kilometres away from Earth, at a special spot in space called the Sun–Earth L2 point. This location is stable and perfect for observing deep space without interruptions. JWST looks mainly in infrared light, which helps it see through thick clouds of space dust. This allows it to spot stars and galaxies that formed soon after the Big Bang. Its powerful instruments are so sensitive that they can catch the faintest light from faraway galaxies and even study the atmospheres of planets outside our solar system—possibly helping us find signs of life.
2. Five-hundred-meter Aperture Spherical Telescope (FAST)
Located in a natural depression in Guizhou, China, FAST is the world's largest and most sensitive single-dish radio telescope. With a massive 500-metre dish, FAST listens to the universe in radio frequencies—essential for detecting signals from distant pulsars, mapping interstellar hydrogen, and searching for potential extraterrestrial intelligence (SETI). Its sensitivity enables the discovery of otherwise undetectable cosmic phenomena across vast distances.
3. Extremely Large Telescope (ELT)
Under construction atop Cerro Armazones in Chile, the ELT will be the largest optical/infrared telescope ever built, with a 39-metre main mirror composed of 798 hexagonal segments. Its light-gathering power will be 250 times greater than Hubble's and will provide images 15 times sharper. Scheduled for first light around 2029, ELT is designed to investigate dark matter, black holes, early galaxies, and potentially habitable exoplanets—pushing the limits of what we know about the universe.
4. Giant Magellan Telescope (GMT)
Also rising in Chile's high desert, the GMT uses seven large mirrors to act as a single, 24.5-metre telescope. It promises image clarity up to ten times better than Hubble, enabling it to see incredibly fine details in distant objects. Scientists hope to use GMT to directly image Earth-like planets, explore galaxy formation, and deepen our understanding of the universe's accelerated expansion.
5. Thirty Meter Telescope (TMT)
Planned for construction atop Mauna Kea, Hawaii (though delayed due to site access disputes), the TMT will feature a 30-meter segmented mirror, optimised for near-infrared and optical observations. It's designed to study everything from the formation of the first galaxies to the evolution of black holes and the search for life-supporting exoplanets, offering unmatched resolution in ground-based astronomy.
6. Gran Telescopio Canarias (GTC)
Located on La Palma in Spain's Canary Islands, GTC is currently the world's largest single-aperture optical telescope with a 10.4-metre mirror. It's been instrumental in studying dark energy, stellar explosions (supernovae), and planet formation. Its location—far from city lights and high above sea level—makes it ideal for observing the universe with minimal atmospheric distortion.
7. Atacama Large Millimeter/submillimeter Array (ALMA)
Sitting high in Chile's Atacama Desert, ALMA consists of 66 movable radio antennas working together as one giant interferometer. By observing the coldest regions of space in millimetre and submillimetre wavelengths, ALMA can peer into dense gas clouds to uncover the birthplaces of stars and planets. It also studies ancient galaxies and the building blocks of life, such as organic molecules.
8. Gemini Observatory (North & South)
Gemini consists of two twin 8.1-metre telescopes—one in Hawaii (Gemini North) and the other in Chile (Gemini South). Together, they provide full-sky coverage. Equipped with adaptive optics and powerful spectrographs, Gemini can capture clear, detailed images of distant galaxies, stellar nurseries, and gamma-ray bursts. Its versatility makes it one of the most productive observatories in modern astronomy.
9. Chandra X-ray Observatory
Launched in 1999, NASA's Chandra remains one of the most important telescopes for observing the universe in X-rays, a high-energy form of light. It specialises in studying extreme environments—such as the hot gas swirling around black holes, exploding stars, and neutron stars. Chandra's precision has helped us understand the life cycles of stars and the structure of galaxy clusters.
10. Magdalena Ridge Observatory Interferometer (MROI)
Located in New Mexico, USA, the MROI uses a technique called interferometry, where light from multiple smaller telescopes is combined to simulate the resolution of a much larger one. This approach yields ultra-high-resolution images of binary star systems, stellar surfaces, and debris disks around young stars—objects typically too fine to resolve using single-mirror telescopes.
Why these telescopes are essential tools in modern astronomy
These telescopes represent the pinnacle of astronomical technology. Their large apertures allow them to gather light from the farthest corners of the universe, enabling us to look back in time. Each observatory focuses on specific wavelengths—infrared, radio, X-ray, or optical—uncovering different layers of cosmic phenomena. Technologies like adaptive optics and interferometry enhance clarity, letting scientists image distant galaxies, exoplanets, black holes, and supernovae with astonishing precision.
India's growing role in modern astronomy
Though not featured in the top‑ten global list, India contributes significantly to modern astronomy infrastructure:
Major Atmospheric Cherenkov Experiment (MACE): Operational from Hanle, Ladakh, at ~4,500 m altitude, MACE is one of the world's highest gamma-ray telescopes. Commissioned in 2021 and inaugurated in
2024
, it advances research in cosmic rays and fundamental physics.
Devasthal Optical Telescope (DOT): Located at ARIES in Uttarakhand, the 3.6-metre DOT is Asia's largest optical telescope. Commissioned in
2016
, it supports advanced imaging and spectroscopy and plays a critical role in regional space research.
These ten telescopes are among the most advanced tools ever built for exploring space. From JWST's deep cosmic gaze to ALMA's insight into galactic birthplaces, they're transforming our understanding of the universe. As more such observatories become operational—and with countries like India boosting their astronomical capabilities—the future of space exploration looks brighter than ever.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


United News of India
7 hours ago
- United News of India
Quake meauring 6.1 hits northern Molucca Sea: GFZ
Beijing, July 26 (UNI) An earthquake with a magnitude of 6.1 jolted the northern Molucca Sea in the western Pacific Ocean at 21:30:01 GMT on Friday, the GFZ German Research Centre for Geosciences said. The epicenter, with a depth of 131.4 km, was initially determined to be at 1.98 degrees north latitude and 126.87 degrees east longitude. UNI XINHUA ARN


NDTV
2 days ago
- NDTV
Harvard Scientist Claims Rare Interstellar Object Might Be "Alien Technology"
A Harvard Scientist claimed that 3I/ATLAS, a rare and mysterious visitor of our solar system, might be a piece of "alien technology". The comet is the third known object ever discovered coming from outside our solar system. Theoretical physicist Professor Avi Loeb told Newsweek that an alien civilisation could have sent the object. The object has been categorised as interstellar because of the hyperbolic shape of its orbital path. It does not follow a closed orbital path about the Sun, NASA explained. The space agency mentioned that the comet is simply passing through our solar system and will continue its journey into interstellar space. "The retrograde orbital plane of 3I/ATLAS around the Sun lies within 5 degrees of that of Earth... The likelihood of that coincidence out of all random orientations is 0.2 per cent," Loeb told the news outlet. 3I/ATLAS was discovered on July 1, 2025, by the Asteroid Terrestrial-impact Last Alert System (ATLAS) survey telescope in Chile. Scientists have estimated that 3I/ATLAS is approximately 10-20 kilometres in diameter, making it the largest interstellar object detected so far. According to Loeb, the brightness of 3I/ATLAS suggests that the object is around 20 kilometres in diameter. He explained that it is "too large for an interstellar asteroid" and "might have targeted the inner Solar System as expected from alien technology". Loeb said that the object lacks features of the comets. "No spectral features of cometary gas are found in spectroscopic observations of 3I/ATLAS," he said. Meanwhile, other scientists are wary of Loeb's claims. Richard Moissl, Head of Planetary Defence at the European Space Agency, told Newsweek: "There have been no signs pointing to non-natural origins of 3I/ATLAS in the available observations." The comet will reach its closest point to the Sun (perihelion) on October 29, 2025, passing just inside Mars' orbit. The astronomers are studying 3I/ATLAS using ground- and space-based telescopes, including the Hubble Space Telescope and the James Webb Space Telescope (JWST), to learn more about its composition, structure, and origin.


The Hindu
3 days ago
- The Hindu
Telescopes spot start of planet formation in Orion
When rocky worlds like the earth began to form, dust in the young Solar System was first heated until it vaporised and then cooled so that the very first, refractory (i.e. heat-loving) minerals could crystallise. Catching that moment in another star system would show astronomers exactly how planet formation begins — but no one had seen it before. A new study in Nature this month has reported just such an event. By examining the star HOPS‑315 in Orion, whose protoplanetary disc is tilted just enough for someone on or near the earth to peer deeper within, researchers from France, the Netherlands, Sweden, Taiwan, and the US observed raw rock vapour cool and crystallise. The protoplanetary disc is a flat, rotating pancake-shaped mass of gas and dust that surrounds a newborn star. Inside it, dust grains bump together, stick, and gradually grow into rocks, planets, moons, and other bodies while the gas creates atmospheres and influences the planets' long-term orbits. The observations themselves were conducted by the NASA James Webb Space Telescope and the Atacama Large Millimeter/sub‑millimeter Array (ALMA) observatory in Chile. In 2023, the team used the NIRSpec and MIRI integral‑field spectrographs onboard the telescope to collect sharp energy readings across a range of frequencies. Eight months later, ALMA observed the same system for signs of carbon monoxide, silicon monoxide and sulphur monoxide. Together, the telescope traced warm gas and dust only a few stellar radii from the star while ALMA mapped cooler gas farther out. The telescope's data contained evidence of a strong band of silicon monoxide gas at around 470 K as well as crystalline silicates. Both lay within 2.2 AU of the star — well inside Mercury's orbit if this were in the solar system. (1 AU equals the earth-sun distance.) The team also ran computer simulations, which predicted that around 1 AU from the star, temperatures hovered around 1,300 K, which is the temperature at which dust just begins to evaporate. The study's energy readings matched the prediction: that interstellar grains must have vaporised there, releasing silicon monoxide gas that then cooled and re-condensed into fresh shards of crystals. According to the study, the relative quantities of crystals of forsterite, enstatite, and tentative silica were reminiscent of inclusions — i.e. minerals trapped inside minerals — that have been found in primitive meteorites on the earth, meaning that a similar condensation chemistry is under way around the star. The ALMA data also revealed no slow silicon monoxide at the star's position whereas the Webb telescope's data was blueshifted by around 10 km/s. Together, they indicate that the minerals lay inside the rising disc atmosphere, the thin upper layer of gas and dust above the mid‑plane of the protoplanetary disc, rather than in the material pouring out of the star. Thus the study has reported the first evidence of solid matter condensing out of rock vapour around a star, a.k.a. the first step of planet formation.