logo
Oceans Feel The Heat From Human Climate Pollution

Oceans Feel The Heat From Human Climate Pollution

NDTV02-06-2025
Geneva:
Oceans have absorbed the vast majority of the warming caused by burning fossil fuels and shielded societies from the full impact of greenhouse gas emissions.
But this crucial ally has developed alarming symptoms of stress -- heatwaves, loss of marine life, rising sea levels, falling oxygen levels and acidification caused by the uptake of excess carbon dioxide.
These effects risk not just the health of the ocean but the entire planet.
Heating Up
By absorbing more than 90 percent of the excess heat trapped in the atmosphere by greenhouse gases, "oceans are warming faster and faster", said Angelique Melet, an oceanographer at the European Mercator Ocean monitor.
The UN's IPCC climate expert panel has said the rate of ocean warming -- and therefore its heat uptake -- has more than doubled since 1993.
Average sea surface temperatures reached new records in 2023 and 2024.
Despite a respite at the start of 2025, temperatures remain at historic highs, according to data from the Europe Union's Copernicus climate monitor.
The Mediterranean has set a new temperature record in each of the past three years and is one of the basins most affected, along with the North Atlantic and Arctic oceans, said Thibault Guinaldo, of France's CEMS research centre.
Marine heatwaves have doubled in frequency, become longer lasting and more intense, and affect a wider area, the IPCC said in its special oceans report.
Warmer seas can make storms more violent, feeding them with heat and evaporated water.
The heating water can also be devastating for species, especially corals and seagrass beds, which are unable to migrate.
For corals, between 70 percent and 90 percent are expected to be lost this century if the world reaches 1.5 degrees Celsius (2.7 degrees Fahrenheit) of warming compared to pre-industrial levels.
Scientists expect that threshold -- the more ambitious goal of the Paris climate deal -- to be breached in the early 2030s or even before.
Relentless Rise
When a liquid or gas warms up, it expands and takes up more space.
In the case of the oceans, this thermal expansion combines with the slow but irreversible melting of the world's ice caps and mountain glaciers to lift the world's seas.
The pace at which global oceans are rising has doubled in three decades and if current trends continue it will double again by 2100 to about one centimetre per year, according to recent research.
Around 230 million people worldwide live less than a metre above sea level, vulnerable to increasing threats from floods and storms.
"Ocean warming, like sea-level rise, has become an inescapable process on the scale of our lives, but also over several centuries," said Ms Melet.
"But if we reduce greenhouse gas emissions, we will reduce the rate and magnitude of the damage, and gain time for adaptation".
More Acidity, Less Oxygen
The ocean not only stores heat, it has also taken up 20 to 30 percent of all humans' carbon dioxide emissions since the 1980s, according to the IPCC, causing the waters to become more acidic.
Acidification weakens corals and makes it harder for shellfish and the skeletons of crustaceans and certain plankton to calcify.
"Another key indicator is oxygen concentration, which is obviously important for marine life," said Ms Melet.
Oxygen loss is due to a complex set of causes including those linked to warming waters.
Reduced Sea Ice
Combined Arctic and Antarctic sea ice cover -- frozen ocean water that floats on the surface -- plunged to a record low in mid-February, more than a million square miles below the pre-2010 average.
This becomes a vicious circle, with less sea ice allowing more solar energy to reach and warm the water, leading to more ice melting.
This feeds the phenomenon of "polar amplification" that makes global warming faster and more intense at the poles, said Mr Guinaldo.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

CeNS researchers develop multi-layer nanomaterial to help detect harmful chemicals and explosives
CeNS researchers develop multi-layer nanomaterial to help detect harmful chemicals and explosives

The Hindu

time7 hours ago

  • The Hindu

CeNS researchers develop multi-layer nanomaterial to help detect harmful chemicals and explosives

Researchers from the Centre for Nano and Soft Matter Sciences (CeNS) have developed an innovative multi-layer nanomaterial that can help detect harmful chemicals, including explosives like TNT and RDX, at trace levels. This innovation is expected to boost airport security and environmental pollution monitoring. According to the Department of Science and Technology, noble metals like gold and silver have traditionally been vital for signal enhancement. However, the high cost of gold and the poor long-term stability of silver remain significant obstacles to their commercial viability. The department said that in recent years, numerous methods have emerged to detect harmful chemicals that impact our daily lives. Among them, surface-enhanced Raman spectroscopy (SERS) has stood out for its exceptional sensitivity and reliability. 'SERS works by amplifying the molecular fingerprint signals of chemicals, allowing for precise identification even at extremely low concentrations,' it said. Now the CeNS researchers have developed an innovative multi-layer nanomaterial combining reduced graphene oxide (rGO), silver nanoparticles (Ag), and cerium oxide (CeO₂) on a glass substrate. The department said that each layer contributes a specific function, and the CeNS team fabricated the composite material using physical vapour deposition techniques, resulting in a uniform and scalable sensing platform. 'While silver nanoparticles are excellent at amplifying Raman signals, they are highly prone to oxidation, especially in humid or warm conditions—reducing their effectiveness over time. The coating of a thin layer of cerium oxide brings two key advantages. It enhances charge transfer between the material and the analyte, further boosting the fingerprint Raman signal of the analyte molecule and also acts as a protective barrier, shielding silver from humidity and temperature-induced degradation and ensuring long-term stability,' the department said. Environmental chamber tests revealed that the substrate maintained its high performance even under extreme conditions—90% humidity and 70 °Celsius—proving its exceptional stability and reliability. 'Meanwhile, the rGO layer plays a crucial role, effectively quenching the overwhelming fluorescence emitted by silver nanoparticles, which would otherwise drown out the distinct Raman fingerprints of the analyte. This clever suppression ensures that the true detection signals shine through with clarity and precision,' it added. The researchers demonstrated the material's high performance using 4-mercaptobenzoic acid (MBA) as a model analyte, achieving a detection limit as low as 10 nM. 'More impressively, the substrate demonstrated the ability to detect a wide range of explosives, including TNT and RDX, at nanomolar concentrations, highlighting its broad potential for trace-level contaminant detection,' the department said.

How to fix a camera millions of kilometres away: NASA's dramatic mission
How to fix a camera millions of kilometres away: NASA's dramatic mission

Hindustan Times

time8 hours ago

  • Hindustan Times

How to fix a camera millions of kilometres away: NASA's dramatic mission

Millions of kilometres from Earth, orbiting the giant Jupiter, NASA's Juno spacecraft faced a serious problem. One of its cameras, called JunoCam, started to fail after being damaged by Jupiter's intense radiation. The team managing the mission had limited ways to fix the issue from so far away. But they came up with a clever plan that brought the camera back to life and allowed it to continue sending valuable images. Dealing with a tough challenge JunoCam is placed outside a heavy radiation shield on the spacecraft. Jupiter's radiation is among the most powerful in our solar system and it slowly damages instruments like JunoCam. Initially, the camera worked well. It took clear pictures during the first 34 orbits, helping scientists and the public learn about Jupiter. But over time, the images started showing problems like streaks and noise that made them hard to use. The engineers believed radiation damaged an important part of the camera's power supply. Without physically repairing it, their options were very limited. They decided to try a method called annealing. This involved heating the camera to a warmer temperature than normal and then letting it cool down slowly. Heating can sometimes heal damage in the materials that make up the camera, although this was a risky move with no guarantee of success. Also read Looking for a smartphone? To check mobile finder click here. Bringing JunoCam back The team turned up the camera's heater to 25 degrees Celsius (77 degrees Fahrenheit). After the heating and cooling process, the camera's images began to improve. This gave hope just weeks before Juno's important close flyby of Io, one of Jupiter's moons known for its volcanic activity. As that flyby approached, the camera's problems returned. The team heated the camera again, this time more aggressively. At first, the results seemed disappointing. But just in the final days before the flyby, the images dramatically improved again. JunoCam was able to capture detailed pictures of Io's surface, showing icy mountains covered in sulfur dioxide and fields of flowing lava from volcanoes. These clear images were close to the quality the camera had when it first launched. Importance for future missions Since this success, the team has used similar heating techniques on other parts of the spacecraft. Juno's mission has now completed more than 70 orbits of Jupiter, each time facing radiation. The lessons learned about repairing and protecting instruments will help future missions, not only those exploring distant planets but also satellites orbiting the Earth. Scott Bolton, Juno's lead investigator, believes these techniques will be important for many spacecraft in the future, as stated in a NASA blog.

2023's marine heatwaves signal early irreversible coral damage: Study
2023's marine heatwaves signal early irreversible coral damage: Study

Business Standard

time14 hours ago

  • Business Standard

2023's marine heatwaves signal early irreversible coral damage: Study

Marine heatwaves -- prolonged periods of raised ocean temperatures than what are typical for that time of year -- experienced in 2023 were not only unprecedented, but may have also signalled a potential climate tipping point, with irreversible, negative impacts to coral reefs and ecosystems, according to a new study. Researchers from China and the US found that regions in oceans across the globe, including the North Atlantic, and the tropical, south and north Pacific experienced extreme marine heatwaves -- the longest in duration, widest in extent and highest in intensity on record. The findings, published in the journal Science, show that the most intense warming occurred in the North Atlantic, tropical eastern Pacific, north Pacific, and southwest Pacific, which "collectively accounted for 90 per cent of the global ocean warming". Heatwaves in the North Atlantic which began mid-2022 persisted for 525 days with an intensity four times the typical, making it "the longest recorded marine heatwave in the region", the authors said. The southwest Pacific heat event broke records for its expanse and prolonged duration, while unusual temperatures in the tropical eastern Pacific peaked at 1.63 degrees Celsius during the onset of El Nino, they said. 'El Nino' is the warm phase of the 'El Nino-Southern Oscillation' (ENSO) natural climate pattern, which involves changes in temperatures and atmospheric pressures in the Pacific Ocean. El Nino is linked with warmer ocean temperatures. The authors, including those from the US' Scripps Institution of Oceanography at the University of California, said the marine heatwaves of 2023 were "a global event with a 50-year return period, (with a less than two per cent chance of occurrence)". First author Tianyun Dong, a joint postdoctoral researcher at the Eastern Institute of Technology, Ningbo, and Southern University of Science and Technology in China, told PTI in an email, "Global warming, observed over a long-term and primarily driven by greenhouse gas emissions, has raised the ocean's baseline state, making marine heatwaves increasingly frequent and intense." Further, the trends observed also suggest a "possible indication of an approaching climatic tipping point", the study said. A climate tipping point, potentially a 'point of no return', is related with irreversible, disproportionate health and economic consequences for the world's most vulnerable, such as tropical coral reefs, and ice sheets of Greenland and Antarctica. "While a full (ocean-climate) system collapse has not occurred, irreversible impacts -- mass coral bleaching in tropical reefs, collapse of key habitats -- are already emerging," Dong said. Coral bleaching in reefs, or the loss of algae in reefs causing a 'whitening' and vulnerability to disease and death, are showing few signs of recovering, while the functional collapse of key habitats in some of the world's regions undermine biodiversity and the role of ecosystems, Dong explained. "These impacts reflect more than a short-term stress, suggesting a shift towards a permanent ecological change. The 2023 marine heatwaves may, therefore, mark a dangerous step closer to tipping points in the ocean-climate system," the first author said. Arpita Mondal, associate professor at the department of civil engineering and centre for climate studies, IIT Bombay, and not involved with the study, told PTI, "Based on a primary reading of the paper, I'm quite convinced of the scientific robustness." Mondal explained that the ocean and atmosphere "talk to each other through processes -- called the 'teleconnections' -- through which far-away processes can influence local weather". "For example, processes in the southern and equatorial Pacific Ocean can influence the Indian monsoon," she said. "Of course, El Nino is the most significant phenomenon which affects not only monsoons in South Asia, but ENSO-neutral conditions -- where neither El Nino nor La Nina dominate -- have been linked with the heat waves in the pre-monsoon season too," Mondal explained. "Similarly, oscillations and circulation of currents in oceans and atmosphere can impact weather worldwide," she added. The study team analysed satellite observations and temperature data of the world's oceans. Data from the NASA-funded 'ECCO2' project, focussed on producing a high-resolution estimate of the state of the world's oceans and sea ice, was also analysed. First author Dong said that despite a relatively weak El Nino -- studies show its growth rate unexpectedly decelerated in mid-2023 -- the unprecedented nature of 2023's marine heatwaves cannot be explained by natural climate variability alone. "A continued warming of the planet -- especially when combined with El Nino -- could produce even more extreme marine heatwaves, pointing toward a potential new normal of amplified ocean heat extremes and a higher chance of crossing physical and ecological tipping points," the first author said. Mondal, who is not involved in the study, pointed to the concerning lack of reliable, long-term ocean data. "My concern is more about the lack of long-term, reliable ocean data globally. We have only been monitoring oceans in the recent years. We do not have say, 150 to 200 years of ocean surface temperatures recorded. However, satellites developed in the last 50 years or so have definitely helped in complementing the buoys which have been in place for monitoring the ocean," she said.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store