logo
8 Children Taken to Hospitals After Seizure-Like Symptoms at Harvard Square Church Concert

8 Children Taken to Hospitals After Seizure-Like Symptoms at Harvard Square Church Concert

Epoch Times4 days ago
CAMBRIDGE, Mass.—Eight children at a church near Harvard University where a French youth choir was holding a concert suffered seizure-like symptoms and were taken to hospitals, possibly the result of fumes from cleaning supplies, officials said.
The symptoms were not life-threatening, the Cambridge Fire Department said in a news release. About 70 other people in attendance at the concert Tuesday evening at St. Paul's Parish in Harvard Square were not affected.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

NIH cuts spotlight a hidden crisis facing patients with experimental brain implants
NIH cuts spotlight a hidden crisis facing patients with experimental brain implants

Hamilton Spectator

time3 hours ago

  • Hamilton Spectator

NIH cuts spotlight a hidden crisis facing patients with experimental brain implants

Carol Seeger finally escaped her debilitating depression with an experimental treatment that placed electrodes in her brain and a pacemaker-like device in her chest. But when its batteries stopped working, insurance wouldn't pay to fix the problem and she sank back into a dangerous darkness. She worried for her life, asking herself: 'Why am I putting myself through this?' Seeger's predicament highlights a growing problem for hundreds of people with experimental neural implants, including those for depression, quadriplegia and other conditions. Although these patients take big risks to advance science, there's no guarantee that their devices will be maintained — particularly after they finish participating in clinical trials — and no mechanism requiring companies or insurers to do so. A research project led by Gabriel Lázaro-Muñoz, a Harvard University scientist, aimed to change that by creating partnerships between players in the burgeoning implant field to overcome barriers to device access and follow-up care. But the cancellation of hundreds of National Institutes of Health grants by the Trump administration this year left the project in limbo, dimming hope for Seeger and others like her who wonder what will happen to their health and progress. An ethical quagmire Unlike medications, implanted devices often require parts, maintenance, batteries and surgeries when changes are needed. Insurance typically covers such expenses for federally approved devices considered medically necessary, but not experimental ones. A procedure to replace a battery alone can cost more than $15,000 without insurance, Lázaro-Muñoz said. While companies stand to profit from research, 'there's really nothing that helps ensure that device manufacturers have to provide any of these parts or cover any kind of maintenance,' said Lázaro-Muñoz. Some companies also move on to newer versions of devices or abandon the research altogether, which can leave patients in an uncertain place. Medtronic, the company that made the deep brain stimulation, or DBS, technology Seeger used, said in a statement that every study is different and that the company puts patient safety first when considering care after studies end. People consider various possibilities when they join a clinical trial. The Food and Drug Administration requires the informed consent process to include a description of 'reasonably foreseeable risks and discomforts to the participant,' a spokesperson said. However, the FDA doesn't require trial plans to include procedures for long-term device follow-up and maintenance, although the spokesperson stated that the agency has requested those in the past. While some informed consent forms say devices will be removed at a study's end, Lázaro-Muñoz said removal is ethically problematic when a device is helping a patient. Plus, he said, some trial participants told him and his colleagues that they didn't remember everything discussed during the consent process, partly because they were so focused on getting better. Brandy Ellis, a 49-year-old in Boynton Beach, Florida, said she was desperate for healing when she joined a trial testing the same treatment Seeger got, which delivers an electrical current into the brain to treat severe depression. She was willing to sign whatever forms were necessary to get help after nothing else had worked. 'I was facing death,' she said. 'So it was most definitely consent at the barrel of a gun, which is true for a lot of people who are in a terminal condition.' Patients risk losing a treatment of last resort Ellis and Seeger, 64, both turned to DBS as a last resort after trying many approved medications and treatments . 'I got in the trial fully expecting it not to work because nothing else had. So I was kind of surprised when it did,' said Ellis, whose device was implanted in 2011 at Emory University in Atlanta. 'I am celebrating every single milestone because I'm like: This is all bonus life for me.' She's now on her third battery. She needed surgery to replace two single-use ones, and the one she has now is rechargeable. She's lucky her insurance has covered the procedures, she said, but she worries it may not in the future. 'I can't count on any coverage because there's nothing that says even though I've had this and it works, that it has to be covered under my commercial or any other insurance,' said Ellis, who advocates for other former trial participants. Even if companies still make replacement parts for older devices, she added, 'availability and accessibility are entirely different things,' given most people can't afford continued care without insurance coverage. Seeger, whose device was implanted in 2012 at Emory, said she went without a working device for around four months when the insurance coverage her wife's job at Emory provided wouldn't pay for battery replacement surgery. Neither would Medicare, which generally only covers DBS for FDA-approved uses. With her research team at Emory advocating for her, Seeger ultimately got financial help from the hospital's indigent care program and paid a few thousand dollars out of pocket. She now has a rechargeable battery, and the device has been working well. But at any point, she said, that could change. Federal cuts stall solutions Lázaro-Muñoz hoped his work would protect people like Seeger and Ellis. 'We should do whatever we can as a society to be able to help them maintain their health,' he said. Lázaro-Muñoz's project received about $987,800 from the National Institute of Mental Health in the 2023 and 2024 fiscal years and was already underway when he was notified of the NIH funding cut in May. He declined to answer questions about it. Ellis said any delay in addressing the thorny issues around experimental brain devices hurts patients. Planning at the beginning of a clinical trial about how to continue treatment and maintain devices, she said, would be much better than depending on the kindness of researchers and the whims of insurers. 'If this turns off, I get sick again. Like, I'm not cured,' she said. 'This is a treatment that absolutely works, but only as long as I've got a working device.' ____ The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Department of Science Education and the Robert Wood Johnson Foundation. The AP is solely responsible for all content.

NIH cuts spotlight a hidden crisis facing patients with experimental brain implants
NIH cuts spotlight a hidden crisis facing patients with experimental brain implants

San Francisco Chronicle​

time3 hours ago

  • San Francisco Chronicle​

NIH cuts spotlight a hidden crisis facing patients with experimental brain implants

Carol Seeger finally escaped her debilitating depression with an experimental treatment that placed electrodes in her brain and a pacemaker-like device in her chest. But when its batteries stopped working, insurance wouldn't pay to fix the problem and she sank back into a dangerous darkness. She worried for her life, asking herself: 'Why am I putting myself through this?' Seeger's predicament highlights a growing problem for hundreds of people with experimental neural implants, including those for depression, quadriplegia and other conditions. Although these patients take big risks to advance science, there's no guarantee that their devices will be maintained — particularly after they finish participating in clinical trials — and no mechanism requiring companies or insurers to do so. A research project led by Gabriel Lázaro-Muñoz, a Harvard University scientist, aimed to change that by creating partnerships between players in the burgeoning implant field to overcome barriers to device access and follow-up care. But the cancellation of hundreds of National Institutes of Health grants by the Trump administration this year left the project in limbo, dimming hope for Seeger and others like her who wonder what will happen to their health and progress. An ethical quagmire Unlike medications, implanted devices often require parts, maintenance, batteries and surgeries when changes are needed. Insurance typically covers such expenses for federally approved devices considered medically necessary, but not experimental ones. A procedure to replace a battery alone can cost more than $15,000 without insurance, Lázaro-Muñoz said. While companies stand to profit from research, 'there's really nothing that helps ensure that device manufacturers have to provide any of these parts or cover any kind of maintenance,' said Lázaro-Muñoz. Some companies also move on to newer versions of devices or abandon the research altogether, which can leave patients in an uncertain place. Medtronic, the company that made the deep brain stimulation, or DBS, technology Seeger used, said in a statement that every study is different and that the company puts patient safety first when considering care after studies end. People consider various possibilities when they join a clinical trial. The Food and Drug Administration requires the informed consent process to include a description of 'reasonably foreseeable risks and discomforts to the participant,' a spokesperson said. However, the FDA doesn't require trial plans to include procedures for long-term device follow-up and maintenance, although the spokesperson stated that the agency has requested those in the past. While some informed consent forms say devices will be removed at a study's end, Lázaro-Muñoz said removal is ethically problematic when a device is helping a patient. Plus, he said, some trial participants told him and his colleagues that they didn't remember everything discussed during the consent process, partly because they were so focused on getting better. Brandy Ellis, a 49-year-old in Boynton Beach, Florida, said she was desperate for healing when she joined a trial testing the same treatment Seeger got, which delivers an electrical current into the brain to treat severe depression. She was willing to sign whatever forms were necessary to get help after nothing else had worked. 'I was facing death,' she said. 'So it was most definitely consent at the barrel of a gun, which is true for a lot of people who are in a terminal condition.' Patients risk losing a treatment of last resort Ellis and Seeger, 64, both turned to DBS as a last resort after trying many approved medications and treatments. 'I got in the trial fully expecting it not to work because nothing else had. So I was kind of surprised when it did,' said Ellis, whose device was implanted in 2011 at Emory University in Atlanta. 'I am celebrating every single milestone because I'm like: This is all bonus life for me.' She's now on her third battery. She needed surgery to replace two single-use ones, and the one she has now is rechargeable. She's lucky her insurance has covered the procedures, she said, but she worries it may not in the future. 'I can't count on any coverage because there's nothing that says even though I've had this and it works, that it has to be covered under my commercial or any other insurance,' said Ellis, who advocates for other former trial participants. Even if companies still make replacement parts for older devices, she added, 'availability and accessibility are entirely different things,' given most people can't afford continued care without insurance coverage. Seeger, whose device was implanted in 2012 at Emory, said she went without a working device for around four months when the insurance coverage her wife's job at Emory provided wouldn't pay for battery replacement surgery. Neither would Medicare, which generally only covers DBS for FDA-approved uses. With her research team at Emory advocating for her, Seeger ultimately got financial help from the hospital's indigent care program and paid a few thousand dollars out of pocket. She now has a rechargeable battery, and the device has been working well. But at any point, she said, that could change. Federal cuts stall solutions Lázaro-Muñoz hoped his work would protect people like Seeger and Ellis. 'We should do whatever we can as a society to be able to help them maintain their health,' he said. Lázaro-Muñoz's project received about $987,800 from the National Institute of Mental Health in the 2023 and 2024 fiscal years and was already underway when he was notified of the NIH funding cut in May. He declined to answer questions about it. Ellis said any delay in addressing the thorny issues around experimental brain devices hurts patients. Planning at the beginning of a clinical trial about how to continue treatment and maintain devices, she said, would be much better than depending on the kindness of researchers and the whims of insurers. 'If this turns off, I get sick again. Like, I'm not cured,' she said. 'This is a treatment that absolutely works, but only as long as I've got a working device.'

Llamas could help treat schizophrenia: study
Llamas could help treat schizophrenia: study

New York Post

time2 days ago

  • New York Post

Llamas could help treat schizophrenia: study

Talk about a llama-zing discovery. They're known for their fluffy furs and sassy stares, but scientists have discovered that llamas may also be the key to treating schizophrenia. And this isn't even the first time this year that llamas have been at the heart of curing a scary health issue. Advertisement They're known for their fluffy furs and sassy stares, but it turns out llamas may also be the key to treating schizophrenia. Cavan for Adobe – In a mind-blowing new study, French researchers have developed a molecule from llama antibodies that could one day help patients with schizophrenia overcome cognitive deficits — a major hurdle that existing treatments fail to address. Scientists at the Institute of Functional Genomics in Montpellier have engineered what's called a nanobody — a tiny antibody fragment found in camelids like llamas — that can activate a specific glutamate receptor responsible for brain signaling. What's more, this molecule can cross the blood-brain barrier — a major challenge in drug development — and go straight to work on neural receptors when injected via a vein or muscle. Advertisement Researchers tested the llama-derived nanobody in two preclinical models of schizophrenia. Just one injection was enough to boost brainpower in mice, showing a clear and sustained improvement in cognitive function for up to a week. More research will be needed to see if this presents a promising new avenue of treatment for schizophrenia and, if so, whether or not this can be expanded to treat other psychiatric and neurodegenerative diseases. Advertisement The findings were published Wednesday in the journal Nature. Schizophrenia is a chronic mental disorder that affects how people perceive reality, leading to hallucinations, delusions, disorganized thinking and speech, paranoia and time gaps. elnariz – Schizophrenia is a chronic mental disorder that affects how people perceive reality, leading to hallucinations, delusions, disorganized thinking and speech, paranoia and time gaps. More than 200,000 people in the US are living with schizophrenia, for which there is no cure. Advertisement The cause of schizophrenia is still unknown, but research suggests a combination of genetic and environmental factors are likely to encourage its onset, which typically occurs between the ages of 16 and 30. Schizophrenia is primarily treated with antipsychotics, which target some of the more severe symptoms like hallucinations and delusions, but fail to do much for cognitive function. This new study offers hope for repairing cognition, as opposed to simply managing symptoms. 'In humans obviously we don't know [yet], but in mice yes, it is sufficient to treat most deficits of schizophrenia,' paper author and CNRS molecular biologist Jean-Philippe Pin told Newsweek. 'For development as a therapeutic tool, more safety and bioavailability studies are needed. Production of large quantities of high quality must be set up to start human studies. For these two possibilities, either a company takes up our project or we find investors to create a startup company.' Meanwhile, another study published last month found that llamas may also hold the secret weapon to curing COVID — and it's also in their nanobodies. 'This work provides a strong foundation for developing next-generation antibodies that could be vital in combating not only current but also future coronavirus threats,' said Dr. Xavier Saelens, senior author of the study and a principal investigator at the VIB-UGent Center for Medical Biotechnology in Belgium.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store