Researchers discover game-changing method to unlock clean water for billions of people: 'Can also be used to distill groundwater'
A team led by associate professor Masatoshi Kondo at the Institute of Science Tokyo, has developed a method to use liquid tin to desalinate seawater and recover valuable metals simultaneously, utilizing solar heat as the primary energy source. Unlike traditional desalination, which consumes significant amounts of electricity and generates toxic brine, this method is low-waste, low-energy, and high-reward.
"Unlike conventional methods, large consumption of electricity is not necessary, enabling the development of a sustainable process," said Dr. Kondo.
Over four billion people experience water scarcity each year, and the demand for clean drinking water continues to increase. Traditional desalination can help — but it's costly, energy-hungry, and generates an estimated over five billion cubic feet of brine daily. That's enough to fill around 50,000 Olympic-sized swimming pools, often dumped back into oceans where it harms marine life.
This is where Dr. Kondo and his research team come in. Co-authored by doctoral student Toranosuke Horikawa, then-bachelor student Mahiro Masuda, and assistant professor Minho Oh from Science Tokyo, their study aims not only to find a simple solution to desalination but also to transform the brine from an environmental issue into a resource.
Kondo's team flips the script by using the brine as a resource instead of waste. Here's how it works. Brine is sprayed onto molten tin. The heated tin evaporates the water, leaving behind a mix of useful metals, including magnesium, calcium, and potassium. As the tin cools, it releases these metals for recovery. Meanwhile, the steam condenses into distilled fresh water.
This isn't just a lab curiosity — it's a game-changer for public health, especially in areas hardest hit by drought, contamination, or poor infrastructure. Researchers can also adapt the process to treat polluted groundwater, including arsenic-contaminated sources that pose a threat to millions worldwide. And because it relies on heat — ideally from solar power — it could bring clean water access to off-grid or resource-limited communities.
"The proposed technology … can also be used to distill groundwater polluted with arsenic without consuming large amounts of energy or producing waste," Dr. Kondo added.
Though still in the research phase, this discovery could mark a major leap forward in sustainable water treatment. It tackles two issues at once — clean water access and resource recovery — while keeping environmental impact low. If scaled successfully, it could reduce costs, decrease pollution, and help stabilize ecosystems affected by over-extraction and drought.
Join our free newsletter for weekly updates on the latest innovations improving our lives and shaping our future, and don't miss this cool list of easy ways to help yourself while helping the planet.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
08-07-2025
- Yahoo
Dune 3 & James Bond Movie Get The Odyssey-Sized Updates
UPDATE 7/8: According to a recent article from , Gelfond is incorrect and won't be entirely shot with IMAX cameras; rather, only some sequences will be. and the new James Bond movie have received The Odyssey-sized updates from IMAX CEO Richard Gelfond. Denis Villeneuve is now in production on Dune 3, which will see Timothée Chalamet reprise his role as Paul Atreides. After that, Villeneuve plans to make the next James Bond movie for Amazon MGM Studios. Speaking on CNBC Television, Gelfond said that Dune 3 will be shot entirely with IMAX cameras. He also expressed hopes that Villeneuve's Bond movie would do the same, though this has not yet been confirmed as the film is still a ways out from beginning production. An article published by Gizmodo notes, 'A spokesperson for IMAX confirmed Villeneuve will, in fact, shoot Messiah with IMAX cameras but could not confirm whether it would be the full film, as per Gelfond's quotes. We also reached out to Warner Bros. but had yet to hear back as of publication. We'll update this story if and when we do.' This will make Dune 3 the second film to be shot entirely on IMAX cameras following Christopher Nolan's The Odyssey, which is currently in production. That movie has a July 17, 2026, release date from Universal Pictures and will star Matt Damon, Tom Holland, Anne Hathaway, Zendaya, Lupita Nyong'o, and more. Not much is known about the new Bond movie at this time, as there has been no casting announcement or plot details that have been revealed. Dune 3, meanwhile, will be an adaptation of Frank Herbert's Dune Messiah, which was published in 1969. Following the events of 2021's Dune and 2024's Dune: Part Two, the confirmed cast of Dune 3, in addition to Chalamet, so far includes Zendaya as Chani, Florence Pugh as Princess Ireland, Jason Momoa as Duncan Idaho, Nakoa-Wolf Momoa as Leto II Atreides, and Ida Brooke as Ghanima Atreides.


Scientific American
08-07-2025
- Scientific American
Cutting-Edge Physics and Chemistry Unfold One Quintillionth of a Second at a Time
Just about anybody who played hide-and-seek as a kid remembers counting, with eyes (presumably) covered, in units of one-one-thousand. 'One-one-thousand. Two-one-thousand. Three-one-thousand.' It's one way to develop a feel for the duration of a second. If you live to be 80 years old, you will experience 2,522,880,000 seconds, not any one of which feels like a long time. When you think about time, it's usually in many-second durations, like minutes, days and years. Unless you become a world-class athlete where differences measured in tenths, hundredths and maybe even thousandths of seconds can mean winning or losing Olympic gold, you might not think intervals shorter than a second are worth a second thought. But what if you allow yourself to imagine what happens in the world at ever shorter time intervals? What if you had a temporal microscope for zooming in on time the way optical, electron and scanning tunneling microscopes let you zero in on ever finer spatial dimensions, even down to the atomic scale? Welcome to the world of a cadre of scientists, some of them Nobel Prize winners, who live in the fastest science lane possible right now — the realm of attoseconds. By leveraging the evolution of laser science and technology, they have trained their attention on molecular, atomic and electronic behavior of ever finer temporal durations — from millionths (micro) to billionths (nano) to trillionths (pico) to quadrillionths (femto) to quintillionths (atto) of seconds. On supporting science journalism If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today. It's in the attosecond-by-attosecond time frame that lots of the sausage of physics and chemistry is made and can be probed. It is where light and electrons do much of the blindingly fast negotiation by which the energy they have to give and take redistributes as they interact. These are temporal realms that set the stage for many chemistry antics: things like electrons shifting between excited higher-energy states and lower-energy states and molecules morphing from reactants into products. In these instants, a chemical ring might open, an electron might fly away leaving a positively charged ion behind, or a photon might beam outward carrying spectroscopic intel that helps scientists figure out what just happened. These are the hidden micromatters that contribute to everything from photosynthesis in leaves to the photophysical basis of vision and the bond-making-and-breaking that underlies the multi-trillion-dollar chemical industry. To those who wield state-of-the-art laser systems and light detectors to capture glimpses of the exquisitely fast happenings in these tiny contexts, even a microsecond or nanosecond can seem like an awfully long time. When you can watch molecules and reactions in attosecond time frames, 'there's this vast other space that is open to you,' says Stephen Leone, a physical chemist at the University of California, Berkeley, who recently chronicled his lifelong research adventure as an 'attosecond chemist' in an autobiographical essay in the Annual Review of Physical Chemistry. With short-enough pulses, he says, you can begin to observe the very movements of electrons that underlie the breaking or making of a chemical bond. Here is what one attosecond looks like when you write it out: 0.000000000000000001 s. That's a billionth of a billionth of a second. An oh-wow factoid that attosecond aficionados sometimes roll out is that there are as many attoseconds in one second as there have been seconds ticking since the Big Bang. One tick on your kitchen clock amounts to an eternity of attoseconds. Here's another head-shaking attosecond fact: In one attosecond, light — which moves at the incomprehensible sprint of 186,000 miles per second — travels the span of a single atom. Attoseconds are a natural time frame for atoms and their electrons, says John Gillaspy, a research physicist at the National Institute of Standards and Technology and former program director of atomic, molecular and optical experimental physics at the National Science Foundation. 'When you think about an electron orbiting a nucleus like a little planet moving around the Sun,' he says, 'the time scale for the orbit is about 1 to 1,000 attoseconds.' (He concedes that he often defers to this early 20th century metaphor for atoms because, he says in a spirit of commiseration, 'if you try to envision them quantum mechanically, you're liable to get quite confused and disturbed.') To do attosecond science, you might start with a top-line femtosecond laser that produces millionths-of-billionths-of-a-second infrared pulses. Then, to produce even shorter-wavelength attosecond laser pulses, you likely will need a pulse-shortening technique, called high harmonic generation (HHG), which won some of its developers the 2023 Nobel Prize in physics. Leone has put such tools and techniques to use in what are called pump-probestudies. These have two main parts. First, he and his team might vent a gas of, say, krypton atoms or methane molecules into the pathway of laser pulses. These pulses carry the photons that will interact with electrons in the sample particles. Then the scientists direct attosecond laser pulses at the sample at different delay times after the initial pulse, taking pains to measure the electromagnetic signals or electrons that emerge. The attosecond-precise monitoring of these signals can amount to a stop-motion movie of electrons, atoms or molecules. In deep chemistry speak, Leone lists some of the attosecond- and femtosecond-fast shifts in electronic energy states and behavior that such techniques have opened to observations in unprecedented detail: chemical bond breaking, yes, but also more subtle yet influential energetic happenings that can thwart reactions or nudge molecules to change shape. These are phenomena in which theory has long outpaced experimental data. These subtler actions include 'curve crossings' and 'conical intersections,' which are terms reflective of the mathematical and geometric depictions of the energy-constrained behavioral 'choices' electrons have to make in atoms and molecules. Does this or that electron hold on to enough energy to cause a bond to break? Or does it vent that energy within the molecule or material more gently to elicit, say, a vibration between bonded atoms, or morph the molecule's shape from one isomer to another? These secret, on-the-fly choices made by electrons leave their traces all over in our biology and could have practical applications — such as repairing broken chromosomes, detecting diseases from chemical hints in the molecular brew of our blood, or engineering laser pulses to produce never-before-seen molecules. 'We didn't understand any of this detail previously and now, I think, it has come into much greater clarity,' Leone says. It suggests ways to elicit specific electronic motions that one needs to break this or that bond or to cause a desired reaction, he adds. The hushed, darkened labs of these laser-wielding experimentalists have an otherworldly feel. A typical centerpiece is a vibration-suppression table with surfaces as still as any place on Earth. Painstakingly aligned there are miniature Stonehenges of lenses and crystal elements that shift, split and recombine laser beams, compress or expand light pulses, and impart tiny delays into when pulses reach samples and detectors. Feeding into these optical pathways are the ultrashort laser pulses and, downstream, the sample atoms and molecules (supplied from nozzles attached to gas tanks or from heated crystals). Much of these setups must reside in steampunk-esque vacuum chambers so that air molecules don't sop up the precious data-bearing light or electron signals before they can make it to detectors and spectrometers. 'It's all a very complicated camera to produce some of the shortest events in time that humans can produce,' says theoretical chemist Daniel Keefer of the Max Planck Institute for Polymer Research in Mainz, Germany, coauthor of a 2023 article in the Annual Review of Physical Chemistry on the applications of ultrafast X-ray and HHG for probing molecules. Keefer's primary tasks include calculating for experimentalists the laser-pulse energies and other conditions most suitable for the studies they plan to do, or helping them infer the electronic behavior in molecules hidden in the spectroscopic data they collect in the lab. But as elementary as these studies can be, some of the phenomena he has studied are as relevant to everyone as keeping their genes intact and functioning. 'It's all a very complicated camera to produce some of the shortest events in time that humans can produce.' —Daniel Keefer Consider that the combination of ultrafast laser pulses and spectroscopic observation empowered him and colleagues to better understand how some of the celebrity molecules of biology, RNA and DNA, manage to quickly dissipate enough of the energy of incoming ultraviolet photons to prevent that energy from wreaking gene-wrecking, photochemical damage. It comes down to the way electrons within the molecules can benignly vent the UV energy by going back to their lowest-energy orbitals. 'This is one mechanism by which potential photodamage is prevented in living organisms exposed to sunlight,' Keefer says. These genetic molecules 'absorb UV light all the time and we're not having a lot of photodamage because they can just get rid of the energy almost instantaneously, and that greatly reduces the risk of your DNA breaking.' Accelerating into the fastest lane To generate attosecond laser pulses, scientists first ping a gas of atoms with an infrared laser. The laser beam gives a kick to every atom it passes, shaking the electrons back and forth in lockstep with its infrared light waves. This forces the electrons to emit new light waves. But they do so with overtones, the way a guitar string vibrates at not only a fundamental frequency but also a range of higher-frequency harmonic vibrations, or acoustic overtones. In the case of infrared laser light, the overtones are at much higher frequencies in the attosecond range, which correspond to ultraviolet or even X-ray wavelengths. That's a huge bonus for attosecond scientists. When packed into supershort pulses, light of these wavelengths can carry sufficient energy to cause electrons to migrate within a molecule's framework. That influences how the molecule will react. Or the laser pulses can coerce electrons to leave the scene entirely, which is one of the ways atoms and molecules become ionized. Gillaspy says that when he thinks of attosecond pulses of light, and yet-shorter pulses in the future (which would be measured in zeptoseconds), his science dreams diverge from spying on the private lives of electrons and toward what becomes possible by packing more energy into ever shorter pulses. Do this, Gillaspy says, and the power confined in the pulse can amplify, albeit ever so briefly, to astronomical levels. It's akin to the way a magnifying glass can concentrate a dull, palm-sized patch of sunlight into a pinpoint of brilliant sunlight that can ignite a piece of paper. Concentrate enough laser power into a short-enough pulse, Gillaspy says, and you might gain access to the quantum vacuum, by which he means the lowest possible energy state that space can have. The quantum vacuum has only been indirectly measured and it sports a generous share of weirdness. Presumably, for example, the 'nothingness' of that vacuum actually seethes with 'virtual' matter-antimatter particle pairs that poof into and out of existence by the bazillions, in slices of time even faster than attoseconds. 'If you could get the laser intensity strong enough you might rip apart the virtual particles from each other in the quantum vacuum and make them real' — which is to say, observable, says Gillaspy. In other words, it could become possible to separate, detect and measure the members of those transient pairs of virtual particles before they annihilate each other and disappear back into the vacuum. 'This is where we could be ripe for fundamental discoveries,' Gillaspy says — although for now, he notes, the capability to produce the required laser intensities remains far off. Jun Ye, a physicist at JILA, a joint research center of the University of Colorado and the National Institute of Standards and Technology, is deploying attosecond physics in pursuit of another believe-it-or-not goal. He intends to tap HHG to detect that mysterious cosmic stuff known as dark matter. Despite never having directly detected dark matter in everyday life or in a laboratory, scientists presume its existence to make sense of the distribution and motions of matter on galactic scales. Without the presence of dark matter — in far more abundance than ordinary matter — and its cosmic-scale gravitational influences, the universe would literally look and behave differently. If the theory is true, a tantalizing consequence is that dark matter — whatever it is — should be abundantly present all around us here on Earth and so should be, in principle, detectable in a lab. Ye is hoping to exploit HHG physics to develop a type of energy-measuring technique, called nuclear spectroscopy, that is especially suited to discern subtle energy shifts in the nuclei of atoms. In this context, it's the multitude of wavelengths of light that HHG naturally produces that make this spectroscopic technique so revealing. This, Ye says, could enable him to monitor minute variations in regular-matter atoms that might be caused by previously unknown interactions with dark matter. At the heart of his plan is a new type of clock, a nuclear clock, that he and colleagues at JILA and elsewhere have been developing. The ticks of these clocks are based on nuclear oscillations (in the bundle of neutrons and protons in thorium-229 nuclei) rather than the electronic oscillations atomic clocks have been based on. 'If the dark matter out there interacts with regular matter, then potentially it will interact with neutrons and protons in atomic nuclei differently than with electrons,' Ye says. And if that is so, comparisons of spectroscopy data from the two types of clocks stand a chance of finally unveiling a dark matter influence on normal matter that has been in operation all along. 'This is how a lot of things start,' says Gillaspy. 'Breakthroughs can start with physicists and chemists just getting fascinated by some new thing, like attosecond phenomena, and then . . . you never know. You don't even imagine what kind of capabilities are going to arise from that.'
Yahoo
30-06-2025
- Yahoo
Five-dimensional physics solves decades-old mystery of mercury fission
An international team of researchers, including scientists from Science Tokyo, has developed a five-dimensional Langevin model that accurately reproduces the complex fission fragment distributions and kinetic energies of medium-mass mercury isotopes like 180Hg and 190Hg. Unlike previous models that struggled to explain mercury's asymmetric fission, this approach captures the unusual double-humped mass distribution seen in mercury-180, revealing how nuclear shell effects continue to shape fission dynamics even at higher excitation energies than previously assumed. By demonstrating that these structural effects persist beyond heavy elements like uranium and plutonium, the findings enhance the understanding of nuclear fission processes and could improve predictive models for unexplored isotopes across the nuclear chart. Aiming to uncover the reasons behind mercury's unusual fission behavior, Associate Professor Chikako Ishizuka and her international team at the Institute of Zero-Carbon Energy, Science Tokyo, developed a five-dimensional Langevin model. Published online in Physical Review C on May 20, 2025, their study offers precise predictions of fragment distributions and total kinetic energy, earning recognition as an Editor's Suggestion by the journal. Unlike the well-studied fission of heavy elements such as uranium and plutonium, the way lighter nuclei like mercury split remains poorly understood. Experiments have revealed that mercury-180 undergoes an unusual asymmetric fission, producing fragments of very different sizes. These surprising results challenge current theories and highlight the need to understand how nuclear structure influences fission in elements with atomic numbers below 82. The Langevin model tracks the changing shape of the nucleus in real time, from its initial equilibrium state to the point of scission when it splits into smaller fragments. Developing consistent models for these lighter elements is crucial, as they often behave very differently from well-studied heavy isotopes. In their study, the team focused on two mercury isotopes: 180Hg, created by colliding 36Ar with 144Sm, and 190Hg, formed from 36Ar and 154Sm. They calculated how the fission fragments split and their total kinetic energies. One major improvement in the model was the introduction of a soft wall at the edges of the deformation space, allowing it to more accurately simulate how the nucleus changes shape during fission. The researchers also included the way shell effects evolve with rising excitation energy, a factor often oversimplified in earlier models. Additionally, the simulation closely matched experimental results for both the fragment mass distributions and total kinetic energy. For 180Hg, it successfully recreated the unusual double-peaked mass pattern observed in experiments. The study also revealed that shell effects remain important even at higher excitation energies of 40–50 MeV, contradicting earlier assumptions that they disappear. The researchers also included multichance fission, where the nucleus releases neutrons before splitting. They found this has little impact on fragment masses at low energies but strongly affects the total kinetic energy, making TKE a useful way to study multichance fission. According to Ishizuka, these findings offer valuable new insights into the fission process, deepening our fundamental understanding of nuclear behavior, and they confirm that the 5D Langevin approach is a reliable and effective tool for accurately predicting key fission observables.