Betelgeuse's companion star finally located after years of debate
But all of that extra attention has led to another remarkable find. As it turns out, Betegeuse isn't alone—it actually has a nearby companion star. The never-before-seen celestial object is detailed in two separate studies scheduled to publish on July 24 in The Astrophysical Journal Letters.
The main clue that tipped astronomers off to the companion star came in the form of Betelgeuse's luminosity intervals, also known as variabilities. The red supergiant actually has two variability periods—a primary one lasting about 400 days, and a secondary that lasts roughly 6 years. After reviewing the star's archival data, researchers recently proposed the longer secondary phase may be due to an external influence in the form of a companion star. But even with an initial search party that included the Hubble Space Telescope and the Chandra X-Ray Observatory, investigators didn't locate any additional stellar objects. Some experts were doubtful that anyone would ever locate the star, even if it existed.
'Papers that predicted Betelgeuse's companion believed that no one would likely ever be able to image it,' Steve Howell, a senior research scientist at NASA Ames Research Center and study co-author, explained in a statement.
That changed after the team enlisted the help of a 'fox.' Mounted on the International Gemini Observatory's Gemini North telescope on Hawai'i's Mauna Kea is a speckle imager named 'Alopeke—the Hawai'ian word for fox. Speckle imagers work by using short exposure times to negate image distortions caused by Earth's atmosphere. This allows for high-resolution looks into the cosmos, in this case with a boost from Gemini North's 26.5-inch mirror. This method allowed astrophysicists to finally locate an extremely faint companion next to Betelgeuse.
Further analysis indicates the second star is six magnitudes fainter than Betelgeuse with a mass about 1.5 times that of the sun. It also is likely an A- or B-type pre-main-sequence star, meaning it is a young, hot blue-white star that isn't yet burning hydrogen in its core.
Betelgeuse and its companion star were likely born at the same time, but their relationship won't end well. According to the study's authors, tidal forces will eventually cause the latter object to spiral into its partner, initiating an end to both of them. That said, astronomers estimate the pair's finale will take place sometime within the next 10,000 years.
But before that, researchers hope to study the two stars even more. Their next chance will begin in November 2027, when the stellar companion's orbit places it at its furthest distance from Betelgeuse.
Solve the daily Crossword
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
a day ago
- Yahoo
Scientist Suggests Tests to See if Large Object Headed Toward Earth Could Be an Alien Spacecraft
Earlier this month, astronomers made a fascinating discovery: a mysterious object with interstellar origins, now dubbed 3I/ATLAS, that's hurtling toward the inner solar system at extreme speeds. As scientists race to get a better understanding of the rare visitor — it's only the third confirmed interstellar object to have ventured into our solar system — some intriguing theories have emerged. One particularly eyebrow-raising possibility beyond the mainstream suggestions of it being either a comet or an asteroid, as championed by Harvard astronomer and alien hunter Avi Loeb, is that 3I/ATLAS could have been sent by an intelligent, extraterrestrial civilization. In a yet-to-be-peer-reviewed paper, Loeb analyzed the possibility that the object is "alien technology," highlighting its unusual trajectory and what he says may be attempts to brake itself to have a closer look at Earth and Jupiter. (He also emphasized that it might just be a comet or space rock.) "The orbital path of 3I/ATLAS has some very unlikely combination of characteristics, which could quite easily have been simple coincidence, as extremely strange as that ostensibly appears," the paper reads. But Loeb — who previously wrote an entire book about the possibility that 'Oumuamua, an interstellar object first observed in 2017, may have been sent to us by an alien civilization — and his colleagues stopped far short of concluding the latest discovery was an alien probe. In the paper, they argued that "this paper is largely a pedagogical exercise" and that "by far the most likely outcome will be that 3I/ATLAS is a completely natural interstellar object, probably a comet." As Swinburne University of Technology lecturer Sara Webb argued in a piece for The Conversation, the idea that the intriguing object could have an extraterrestrial origin is an intriguing hypothesis, and shouldn't be discarded. "The idea of alien probes wandering the cosmos may sound strange, but humans sent out a few ourselves in the 1970s," Webb wrote, pointing out that "both Voyager 1 and 2 have officially left our Solar System, and Pioneer 10 and 11 are not far behind." "So it's not a stretch to think that alien civilisations — if they exist — would have launched their own galactic explorers," she concluded. However, figuring out whether 3I/ATLAS is indeed an alien probe coming to visit our system isn't nearly as easy as it sounds. According to Webb, we'd start out by checking if the object has a "tail" like comets do. Other than that, we could "look for signs of electrostatic discharge caused by sunlight hitting the probe" or "any kind of radio waves coming from the probe as a form of communication." But in the absence of any clear indications that 3I/ATLAS is an alien visitor, Webb agrees with Loeb that, as intriguing as the alternative may be, there's a very good chance we're looking at a comet: a celestial wad of ice, dust, and rock. "For now, 3I/ATLAS is likely just an unusually fast, old and icy visitor from a distant system," Webb concluded. "But it also serves as a test case: a chance to refine the way we search, observe and ask questions about the universe." More on the object: Astronomer Says the Object Approaching Us From Beyond the Solar System Is Not What We Think Solve the daily Crossword
Yahoo
a day ago
- Yahoo
Watch two meteor showers at once: Best time to see the Delta Aquariids and Capricornids
The Brief The Southern Delta Aquariid and Alpha Capricornid meteor showers will both peak early July 30. Each shower could produce around a dozen visible meteors per hour under dark skies. Viewing is expected to be ideal due to a dim, quarter-full moon and clear summer conditions. Stargazers are in for a treat as two meteor showers will peak at the same time before dawn on July 30, creating a rare summer sky double feature. The Southern Delta Aquariid and Alpha Capricornid meteor showers are expected to produce a combined total of up to two dozen visible meteors per hour in areas with dark skies and minimal light pollution. Because the moon will be just a quarter full, its light shouldn't interfere much with visibility. "Look for flashes of light in the night sky," said Thaddeus LaCoursiere, planetarium program coordinator at the Bell Museum in St. Paul, Minnesota. He described both showers as "very nice classic meteor showers." What is a meteor shower? The backstory Meteor showers occur when Earth passes through debris trails left by comets—tiny fragments of dust and rock that burn up upon entering our atmosphere. The Southern Delta Aquariids come from the comet 96P/Machholz. The Alpha Capricornids originate from comet 169P/NEAT. As the fragments hit the Earth's atmosphere at high speed, the friction causes them to heat up and glow, sometimes producing streaks known as "shooting stars." What we know Both meteor showers are already active and will remain visible through August 12, with the early morning of July 30 expected to offer the best viewing. The Alpha Capricornids tend to feature slower meteors that leave lingering tails, according to Nick Moskovitz of the Lowell Observatory in Flagstaff, Arizona. No special equipment is needed—just find a dark, clear location and look up. What we don't know Exact meteor counts can vary depending on conditions. Cloud cover, haze, and local light pollution may reduce visibility. It's also uncertain how widespread the viewing conditions will be across the U.S. on July 30, depending on regional weather forecasts. What you can do To see the meteor showers: Head outdoors in the early morning hours before dawn. Choose a spot away from city lights with an unobstructed view of the sky. Let your eyes adjust to the darkness and avoid looking at your phone—it ruins your night vision. No binoculars or telescopes needed; wide views of the sky work best. What's next If you miss this week's peak, don't worry—the Perseids, one of the most anticipated meteor showers of the year, will peak in mid-August and often deliver much higher rates of visible meteors. The Source This article is based on reporting from the Associated Press and includes expert commentary from the Bell Museum and the Lowell Observatory. Meteor activity data comes from NASA and the International Meteor Organization. Solve the daily Crossword


Gizmodo
a day ago
- Gizmodo
A Rare Interstellar Object Is Zipping Through Our Solar System. This Brand-New Telescope Saw It First
Nearly a month ago, a mysterious object was seen hurtling through the solar system and later confirmed as an interstellar visitor traveling toward the Sun. Several telescopes have since turned their attention to the wandering object, but it turns out the brand-new Vera C. Rubin Observatory was the first to catch a glimpse of 3I/ATLAS. In an act of cosmic serendipity, astronomers pointed the Rubin Observatory toward the patch of sky where the interstellar object appeared during its commissioning phase. Images captured by the observatory, perched atop a mountain in the Chilean Andes, later revealed the comet in its full glory. Rubin's observations of 3I/ATLAS were recorded on June 21, around 10 days before its official discovery, according to a recent paper available on the preprint website arXiv. The Rubin Observatory, overseen by the National Science Foundation (NSF) and the Department of Energy (DOE), boasts the largest digital camera ever built for astronomy. Its car-sized, 3.2-gigapixel camera is designed to capture ultra-high-definition images and videos of the cosmos. The observatory unveiled its first images to the public on June 23, observing millions of galaxies and stars in the Milky Way over a period of just 10 hours. The images were not only beautiful—they also revealed supernovas and distant galaxies that could help astronomers study the universe's expansion. With its revolutionary precision, it's no wonder then that the Rubin Observatory captured the recently discovered comet before any other telescope. 3I/ATLAS was first spotted in data collected by the Asteroid Terrestrial-impact Last Alert System (ATLAS) between June 25 and 29, and again on July 1. By July 2, the Deep Random Survey remote telescope in Rio Hurtado, Chile, had seen it too. The International Astronomical Union's Minor Planet Center confirmed that this comet came from outside our solar system on July 2, marking the third discovery of an interstellar object. Since then, astronomers have been rushing to gather as much data as they can on the mysterious object. The Gemini North telescope on Maunakea, Hawaii, recently snapped a close-up view of 3I/ATLAS, capturing the comet's coma in extreme detail. Initial observations of 3I/ATLAS suggest it's the oldest comet ever found, around 2 billion years older than our solar system. Compared to the two previously discovered interstellar objects, 'Oumuamua and Comet 2I/Borisov, 3I/ATLAS is not only older, but it's also faster. A recent study, which has yet to undergo peer review, found that 3I/ATLAS has a hyperbolic velocity of about 37 miles per second (60 kilometers per second). Rubin's early observations of 3I/ATLAS are important considering they are the earliest images captured of the comet by a high-precision telescope. The new paper includes 49 images in total, although some were excluded because they were captured during Rubin's alignment sequence and were out of focus. Nineteen of the images were captured during intentional operations and confirm that 3I/ATLAS does in fact behave like a comet, with a cloud of gas and dust surrounding its icy nucleus, according to the paper. Just as it was the first to spot the comet, Rubin will also be the first to lose sight of it. On August 22, 3I/ATLAS will shift out of the area in the sky currently being watched by the observatory. Until then, the astronomers behind the paper will keep an eye out for the interstellar visitor in Rubin's images.