logo
Magic mushrooms live up to their name by appearing to slow ageing

Magic mushrooms live up to their name by appearing to slow ageing

Yahooa day ago
Psychedelic mushrooms are sometimes called 'magic' for their hallucinogenic effects which some proponents believe make them think more clearly and see things they would never ordinarily perceive.
But going by findings published in Nature Partnering Journal Aging, the easily-harvested and widely-available wild fungi could be called magic for another reason: they appear to have anti-ageing properties.
According to Baylor College of Medicine and Emory University in the US, the active psychedelic compound in the mushroom, known as psilocybin, "may extend both cellular and organismal lifespans."
The team said that psilocybin "reduced multiple hallmarks of ageing in cells" and, depending on the dosages, "extended cellular lifespan up to 57%."
The researchers also carried out tests on mice that showed psilocybin improving survival in older rodents.
The mushrooms, and psilocybin in particular, have been shown to help depression patients and, but the physical effects outside the brain have gone uncharted.
According to the research team, there are around 150 studies ongoing or recently completed looking at psilocybin's potential to treat not only depression but also cognitive disorders such as dementia.
Last month, the American Cancer Society published findings of a second phase of tests that showed a "significant" reduction in depression among more than half of participants two years on from receiving a 25-milligram dose of psilocybin.
"Our findings suggest that psilocybin has potent effects on the entire body, including anti-ageing properties, which also may contribute to the plethora of observed beneficial clinical outcomes," said Louise Hecker, associate professor of medicine – cardiovascular research at Baylor.
"Our study provides the first experimental evidence demonstrating that psilocybin impacts hallmarks of ageing," the team said.
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Astronomers Witness an Alien Solar System's Birth for the First Time
Astronomers Witness an Alien Solar System's Birth for the First Time

Scientific American

time23 minutes ago

  • Scientific American

Astronomers Witness an Alien Solar System's Birth for the First Time

Peering through a cosmic keyhole at distant baby star, astronomers may have opened a new window on the deep past of our own solar system. Using combined observations from the James Webb Space Telescope (JWST) and the Atacama Large Millimeter/submillimeter Array (ALMA) in Chile, an international research team has glimpsed the earliest moments of planetary creation around the protostar HOPS-315, which lies in a giant star-forming region that is located about 1,400 light-years away in the constellation of Orion. Their findings appear in a study published on Wednesday in Nature. Weighing in at 0.6 solar mass, HOPS-315 should someday grow to become a star much like our own sun; this makes it a promising stand-in for studying the first stages of our solar system's history. For now, however, it's shrouded by a vast and obscuring envelope of inflowing material—baby food for a hungry stellar newborn. On supporting science journalism If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today. But JWST's infrared and ALMA's radio observations have pierced this veil, peering through a gap in the envelope to probe other structures around HOPS-315 in unprecedented detail—most notably a whirling halo of hot gas and dust called a protoplanetary disk. Such disks are wombs for embryonic worlds; in them, clumps of rock called planetesimals coalesce and eventually build up into full-fledged planets. Yet no planetesimals can form without smaller grains of crystalline minerals first condensing within the disk, which occurs as the disk's gas cools. For generations, astronomers have been literally in the dark about this process, as the enveloping clouds that nourish a protostar typically obscure its intimate details. Planetary scientists studying our own solar system haven't fared much better because more than four and a half billion years lie between them and the birth of our own star and its retinue of worlds. What little evidence we have from that distant era mostly comes in the form of calcium-aluminum-rich inclusions (CAIs) preserved in ancient meteorites. Precise radiometric dating has shown these to be the oldest solid objects to arise around the sun, suggesting CAIs may be the primordial seeds from which future planets would grow. Scientists set the clock for everything around the sun using CAIs, marking their emergence as 'time zero' in our solar system's history. Presumably the CAIs were formed by mineral grains showering from the slowly cooling disk of hot gas that must have once surrounded our infant sun. But exactly how, where and when they came into being, no one really knows. Short of having a time machine to go back and look, the only way to solve this mystery is to study what we can see of this process around other infant stars—which, until these observations of HOPS-315, hasn't been very much. 'Most of what we've seen is colder, older protoplanetary disks,' says the new study's lead author Melissa McClure, an astronomer at Leiden University in the Netherlands. 'The period [for the formation of mineral grains and CAIs] is really short, like 100,000 years. Blink, and you'll miss it. And these young protostars are still enveloped in dense molecular clouds, which are hard to see through.' HOPS-315, however, is not only very young but also tilted at a certain angle with respect to our solar system—a position that lets astronomers see deeper and closer to the protostar. 'This system is a unicorn,' says Fred Ciesla, a planetary scientist at the University of Chicago, who peer-reviewed the Nature paper and penned an accompanying commentary. 'It has a hot inner disk that's still going through this early phase, and it's oriented so we can actually see it. That makes it very special, and I expect we still have a lot to learn from it.' Another critical contributor was JWST; earlier observations by other facilities, such as NASA's Spitzer Space Telescope, had flagged the system as a promising target yet lacked the capability for thorough follow-up. 'It was Webb's massive improvements in sensitivity and spectral resolution that allowed this to happen,' McClure says. With the stars literally and figuratively aligned, McClure and several colleagues observed HOPS-315 with JWST in March and September 2023. A painstaking analysis of the data revealed the molecular fingerprints of gaseous silicon monoxide, as well as a mix of crystalline silicates—all telltale signs of solid mineral grains condensing out as the hot gas in the protoplanetary disk cools. HOPS-315 is also burping up an outflowing jet of material as it feeds, however, which the researchers worried might be the source of those signals. Subsequent observations with ALMA in November 2023 helped to confirm the mineral grains were present not in the jet but rather in a region of the protostar's disk that spans twice the distance between the Earth and the sun—and that is located at the equivalent orbit around our star of our solar system's main asteroid belt. The churning of the disk or intense stellar winds from the growing protostar may help the grains accumulate there. Although the JWST and ALMA observations did not directly detect CAIs, the ratios of the detected minerals and their location around HOPS-315 are consistent with many models' predictions of the conditions for the emergence of CAIs at 'time zero' in the very early solar system. 'This new work strongly suggests that, for [HOPS-315], conditions suitable for CAI formation occur within about [one Earth-sun distance] at an early time—a fraction of a million years' after a protostar's formation, says Phil Armitage, a planet-formation theorist at Stony Brook University and the Flatiron Institute in New York City, who was not involved in the new work. This isn't necessarily surprising, he adds, although 'you could certainly imagine other possibilities' in which CAIs would form significantly earlier or later in a protostar's evolution. Consequently, 'it will be interesting to see if similar signatures can be detected in systems of different ages.' Ilaria Pascucci, an astronomer at the University of Arizona, who was also not part of the new study, emphasizes that the result is so fundamentally profound that it demands very careful investigation and follow-up. 'It would be extremely important to detect CAIs in protoplanetary disks because it would allow us to connect the evolution of these disks with that of the solar system,' she says. 'But in this paper, the authors clearly state they haven't detected CAIs; they've [instead] detected crystalline grains that could have formed in an environment where CAIs could form, too. It's a very interesting link.' Observations of protostars such as HOPS-315, she adds, can be very difficult to interpret. 'There is the star, the disk, the wind, the jet, the envelope—these are very complex objects,' she says. 'The authors have done a really nice job of teasing out all the information they can from their observations [of HOPS-315], but this is a challenging object, so we definitely need to find and look at more.' One protostar in particular, Pascucci notes, is HOPS-68. Other astronomers observed it with Spitzer in 2011 and found similar features in the lower-resolution data that was available then. At the time, they interpreted those features as part of the protostar's obscuring envelope rather than its inner protoplanetary disk, she says, yet this new result suggests it may be time to revisit that object with JWST for another, deeper look. As for HOPS-315, McClure speculates that the system may still hold surprises. Her team's JWST data, she says, show that the outflow jet that complicated their analysis is conspicuously depleted in silicon—which happens to be the most important element for making the silicates that serve as planetary building blocks. Perhaps, then, instead of feeding the jet, the silicon has been locked away elsewhere—such as in reservoirs of dust or even larger rocky objects that are deeper in the disk. 'Our estimates suggest that something like 98 percent of the silicon we'd expect relative to the carbon we see [in the jet] is missing,' she says. 'That may be a hint that planetesimals are already forming there in a similar way that they must have in our solar system.'

Astronomers capture the birth of planets around baby sun outside our solar system

timean hour ago

Astronomers capture the birth of planets around baby sun outside our solar system

CAPE CANAVERAL, Fla. -- Astronomers have discovered the earliest seeds of rocky planets forming in the gas around a baby sun-like star, providing a precious peek into the dawn of our own solar system. It's an unprecedented snapshot of 'time zero,' scientists reported Wednesday, when new worlds begin to gel. 'We've captured a direct glimpse of the hot region where rocky planets like Earth are born around young protostars," said Leiden Observatory's Melissa McClure from the Netherlands, who led the international research team. 'For the first time, we can conclusively say that the first steps of planet formation are happening right now.' The observations offer a unique glimpse into the inner workings of an emerging planetary system, said the University of Chicago's Fred Ciesla, who was not involved in the study appearing in the journal Nature. 'This is one of the things we've been waiting for. Astronomers have been thinking about how planetary systems form for a long period of time," Ciesla said. 'There's a rich opportunity here.' NASA's Webb Space Telescope and the European Southern Observatory in Chile teamed up to unveil these early nuggets of planetary formation around the young star known as HOPS-315. It's a yellow dwarf in the making like the sun, yet much younger at 100,000 to 200,000 years old and some 1,370 light-years away. A single light-year is 6 trillion miles. In a cosmic first, McClure and her team stared deep into the gas disk around the baby star and detected solid specks condensing — signs of early planet formation. A gap in the outer part of the disk gave allowed them to gaze inside, thanks to the way the star tilts toward Earth. They detected silicon monoxide gas as well as crystalline silicate minerals, the ingredients for what's believed to be the first solid materials to form in our solar system more than 4.5 billion years ago. The action is unfolding in a location comparable to the asteroid belt between Mars and Jupiter containing the leftover building blocks of our solar system's planets. The condensing of hot minerals was never detected before around other young stars, 'so we didn't know if it was a universal feature of planet formation or a weird feature of our solar system,' McClure said in an email. 'Our study shows that it could be a common process during the earliest stage of planet formation.' While other research has looked at younger gas disks and, more commonly, mature disks with potential planet wannabes, there's been no specific evidence for the start of planet formation until now, McClure said. In a stunning picture taken by the ESO's Alma telescope network, the emerging planetary system resembles a lightning bug glowing against the black void. It's impossible to know how many planets might form around HOPS-315. With a gas disk as massive as the sun's might have been, it could also wind up with eight planets a million or more years from now, according to McClure. Purdue University's Merel van 't Hoff, a co-author, is eager to find more budding planetary systems. By casting a wider net, astronomers can look for similarities and determine which processes might be crucial to forming Earth-like worlds. ___

Scientists recover proteins from a 24 million-year-old rhino fossil. Are dinosaurs next?
Scientists recover proteins from a 24 million-year-old rhino fossil. Are dinosaurs next?

Yahoo

time4 hours ago

  • Yahoo

Scientists recover proteins from a 24 million-year-old rhino fossil. Are dinosaurs next?

Scientists have recovered ancient proteins from a fossilized rhinoceros tooth, breaking new ground in the study of ancient life on Earth. The 24 million-year-old tooth, which was unearthed in the Canadian Arctic, contains proteins that are 10 times older than the most ancient known DNA. Using the sample, scientists have now analyzed the oldest detailed protein sequence on record. 'Enamel is so hard it protects these proteins over deep time (long time scales),' said Ryan Sinclair Paterson, a postdoctoral researcher at the Globe Institute at the University of Copenhagen in Denmark who led the Canadian research. 'It's essentially like a vault. What we did was unlock this vault, at least for this specific fossil.' The study of ancient DNA preserved in bones, fossils and dirt has revolutionized archaeological science, pulling back the curtain on lost empires, mysterious clans, ice age creatures and previously unknown human species. Ancient proteins promise a similar revolution for fossils that are many millions of years old and currently beyond the chronological reach of ancient DNA. The study, which published July 9 in the scientific journal Nature, showcases the enormous potential of the field, known as paleoproteomics. Proteins, which are made up of sequences of amino acids, are more robust than DNA, a fragile molecule that degrades relatively easily. Although proteins contain less detailed information, they can help to elucidate a specimen's evolutionary history, diet, even in some cases the sex of a fossil. 'The next step is to demonstrate that it's not just one sample, one lucky strike,' said coauthor Enrico Cappellini, a professor at the University of Copenhagen's Globe Institute who has pioneered methods to extricate proteins from fossils and was involved in the Canadian research. 'But potentially there's a huge area of research that could be further clarified and then, if we really push it farther … we could even start to investigate dinosaurs,' he added. Cappellini and Paterson, along with colleagues at the University of York and the Canadian Museum of Nature, recovered sequences from seven proteins preserved inside the fossilized rhino tooth. Sequencing ancient proteins involves determining the order of amino acids in a sample. By comparing the sequences with those of living and extinct relatives, the scientists were able to glean information about the evolution of the rhino. The analysis revealed that it diverged from the same family as living rhinos about 41 million to 25 million years ago. 'In the fossil record, there were some crazy forms (of rhinoceros species). There's the woolly rhinoceros, and maybe you've heard of the Siberian unicorn with the gigantic horn,' Paterson said. 'What we were able to do is compare our mystery rhino with other forms and find out where it falls in the family tree.' Separate research, also published July 9 in the journal Nature, which sampled fossils from Kenya's Turkana Basin, suggests that biomolecules can survive for millions of years, even in searing, tropical environments. The study, which analyzed 10 mammal fossils, including the relatives of today's elephants, hippos and rhinos, was published by researchers at the Smithsonian Institution's Museum Conservation Institute and Harvard University. They recovered proteins from five of the fossils dated 1.5 million to 18 million years ago, and found that even in tropical regions with high temperatures scientists can extract prehistoric proteins, which can reveal links between ancient elephants and rhinos and their modern-day relatives. While the information contained in the Kenyan proteins wasn't as detailed as that found in the Canadian fossil, the authors said that their presence within enamel tissues in one of the world's warmest regions holds promise that proteins in much older fossils could be discovered. 'We were excitingly successful. We went back to about 18 million years. I think going back in time should be possible,' said study author Timothy Cleland, a physical scientist at the Museum Conservation Institute. The research on the Canadian fossil was 'sound and super interesting,' said Maarten Dhaenens, a researcher at the University of Ghent in Belgium who specializes in proteomics. However, Dhaenens, who wasn't involved in either study, said the methodology used on the Kenyan fossils was complex and less tested. The researchers' findings, he argued, are harder to interpret and warranted a more thorough assessment. 'The data is publicly available, so we should be able to verify their claims through manual validation, but this takes time,' he said via email. Evan Saitta, paleontologist and research associate at Chicago's Field Museum of Natural History, said it was 'shocking' to find proteins preserved within fossils at tropical latitudes and added that the findings needed replication. It had been previously assumed that cold temperatures were necessary to slow down the breakdown of proteins. 'If that is a true result … it should be very easy to replicate,' he noted. 'We should be able to go around all different fossil sites all over the world and find enamel peptides (proteins).' Getting proteins from fossils this old would be a palaeontologist's dream come true, said Matthew Collins, the McDonald Professor in Palaeoproteomics at the UK's University of Cambridge, who agreed that the research on the Canadian fossil was more convincing. Collins, like Saitta, was not involved in the new research. 'This is amazing. It's really exciting, but at the same time I've been disappointed so much in my career by thinking that we had very old proteins and we didn't,' added Collins, who has tried to recover proteins from dinosaur fossils. Collins and Saitta were part of a team that detected amino acids in a titanosaur eggshell fragment, according to research published in 2024. The egg was laid by a plant-eating sauropod, a huge, long-necked dinosaur that lived in the Late Cretaceous, shortly before dinosaurs went extinct 66 million years ago. However, the dinosaur eggshell lacked any identifiable protein sequences. Their results were akin to identifying five letters in a novel, revealing only a pattern of decay that showed there were once proteins in the eggshell, said Saitta. 'There's no sequence left, no information, just the little individual Lego building blocks of (amino acids),' Collins said. Getting protein information from a dinosaur tooth is a long shot, and Saitta noted that he had given up looking for proteins in dinosaur fossils in favor of exploring more interesting research questions. Not only are dinosaur fossils far older than the fossils in the two studies, he noted, but they mostly date back to a hothouse period in the global climate when there were no ice caps. What's more, on average, dinosaur fossils are buried far deeper and thus have experienced far greater geothermal heat. It's also not clear whether dinosaur teeth had thick enough enamel to preserve proteins, he added. Cappellini and Paterson said it might be possible to retrieve useful protein information from dinosaur fossils within 10 years, although there were other interesting questions to investigate first, such as how mammals came to dominate the planet after the dinosaurs' demise. 'I really think some sites might preserve dinosaur proteins in deep time. Maybe we can give those a shot,' Paterson said.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store