logo
The physics that keeps a crowd from becoming a stampede

The physics that keeps a crowd from becoming a stampede

Observer12-02-2025
Every July, at the opening ceremony of the San Fermín festival signaling the imminent start of the running of the bulls in Pamplona, Spain, more than 5,000 people cram into the city's central plaza.
Participants have described the raucous crush of people to Denis Bartolo, a physicist at the École Normale Supérieure in Lyon, France, who hasn't dared step foot in the plaza himself. 'It's not just that you're feeling uncomfortable,' he said he'd been told. 'It becomes painful like you can feel pressure on your chest.'
Over several years, he studied the event hoping to one day help prevent stampedes that can turn lethal in large events. In a paper published in the journal Nature, Bartolo, and his colleagues say it may be possible to predict the spontaneous motion of a large crowd once the density of people crosses a critical threshold.
Bartolo's team mounted cameras on the balconies of two buildings and found that the crowds turned out to be less chaotic than they might have otherwise appeared. Within the sea of people, circular oscillations were detected. 'We are talking about hundreds, if not thousands, of people, all following the same circular trajectory in sync,' Bartolo said.
In addition, the orbital motions, in which each person traces out a rough circle from their starting point in the crowd, took 18 seconds to complete in this particular plaza.
The team then examined surveillance footage of the 2010 Love Parade in Duisburg, Germany, where 21 died in a stampede, and detected the same oscillations emerging just before the stampede. The researchers found that above a certain density, these movements emerge spontaneously. They don't depend on some internal or external force, such as people actively pushing one another.
Bartolo suggests monitoring crowds for these motions. Detecting them can offer wa arning of danger ahead. By catching oscillations when they're small, event organizers could ask the crowd to disperse or stand still, before the orbits grow in size and lead to people being crushed or trampled.
This article originally appeared in
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

New T-Rex ancestor discovered in drawers of Mongolian institute
New T-Rex ancestor discovered in drawers of Mongolian institute

Observer

time14-06-2025

  • Observer

New T-Rex ancestor discovered in drawers of Mongolian institute

Misidentified bones that languished in the drawers of a Mongolian institute for 50 years belong to a new species of tyrannosaur that rewrites the family history of the mighty T-Rex, scientists said Wednesday. This slender ancestor of the massive Tyrannosaurus Rex was around four metres (13 feet) long and weighed three quarters of a tonne, according to a new study in the journal Nature. "It would have been the size of a very large horse," study co-author Darla Zelenitsky of Canada's University of Calgary told AFP. The fossils were first dug up in southeastern Mongolia in the early 1970s but at the time were identified as belonging to a different tyrannosaur, Alectrosaurus. For half a century, the fossils sat in the drawers at the Institute of Paleontology of the Mongolian Academy of Sciences in the capital Ulaanbaatar. Then PhD student Jared Voris, who was on a trip to Mongolia, started looking through the drawers and noticed something was wrong, Zelenitsky said. It turned out the fossils were well-preserved, partial skeletons of two different individuals of a completely new species. "It is quite possible that discoveries like this are sitting in other museums that just have not been recognised," Zelenitsky added. - 'Messy' family history - They named the new species Khankhuuluu mongoliensis, which roughly means the dragon prince of Mongolia because it is smaller than the "king" T-Rex. Zelenitsky said the discovery "helped us clarify a lot about the family history of the tyrannosaur group because it was really messy previously". The T-Rex represented the end of the family line. It was the apex predator in North America until 66 million years ago, when an asteroid bigger than Mount Everest slammed into the Gulf of Mexico. Three quarters of life on Earth was wiped out, including all the dinosaurs that did not evolve into birds. Around 20 million years earlier, Khankhuuluu -- or another closely related family member -- is now believed to have migrated from Asia to North America using the land bridge that once connected Siberia and Alaska. This led to tyrannosaurs evolving across North America. Then one of these species is thought to have crossed back over to Asia, where two tyrannosaur subgroups emerged. One was much smaller, weighing under a tonne, and was nicknamed Pinocchio rex for its long snout. The other subgroup was huge and included behemoths like the Tarbosaurus, which was only a little smaller than the T-rex. One of the gigantic dinosaurs then left Asia again for North America, eventually giving rise to the T-Rex, which dominated for just two million years -- until the asteroid struck. —AFP

Astronomers scrutinise a star behaving unlike any other
Astronomers scrutinise a star behaving unlike any other

Observer

time29-05-2025

  • Observer

Astronomers scrutinise a star behaving unlike any other

WASHINGTON: Astronomers have spotted a star acting unlike any other ever observed as it unleashes a curious combination of radio waves and X-rays, pegging it as an exotic member of a class of celestial objects first identified only three years ago. It is located in the Milky Way galaxy about 15,000 light-years from Earth in the direction of the constellation Scutum, flashing every 44 minutes in both radio waves and X-ray emissions. A light-year is the distance light travels in a year, 5.9 trillion miles (9.5 trillion km). The researchers said it belongs to a class of objects called "long-period radio transients", known for bright bursts of radio waves that appear every few minutes to several hours. This is much longer than the rapid pulses in radio waves typically detected from pulsars - a type of speedily rotating neutron star, the dense collapsed core of a massive star after its death. Pulsars appear, as viewed from Earth, to be blinking on and off on timescales of milliseconds to seconds. "What these objects are and how they generate their unusual signals remain a mystery," said astronomer Ziteng Wang of Curtin University in Australia, lead author of the study published this week in the journal Nature. In the new study, the researchers used data from Nasa's orbiting Chandra X-ray Observatory, the ASKAP telescope in Australia and other telescopes. While the emission of radio waves from the newly identified object is similar to the approximately 10 other known examples of this class, it is the only one sending out X-rays, according to astrophysicist and study co-author Nanda Rea of the Institute of Space Sciences in Barcelona. The researchers have some hypotheses about the nature of this star. They said it may be a magnetar, a spinning neutron star with an extreme magnetic field, or perhaps a white dwarf, a highly compact stellar ember, with a close and quick orbit around a small companion star in what is called a binary system. "However, neither of them could explain all observational features we saw," Wang said. Stars with up to eight times the mass of our sun appear destined to end up as a white dwarf. They eventually burn up all the hydrogen they use as fuel. Gravity then causes them to collapse and blow off their outer layers in a "red giant" stage, eventually leaving behind a compact core roughly the diameter of Earth - the white dwarf. The observed radio waves potentially could have been generated by the interaction between the white dwarf and the hypothesised companion star, the researchers said. - Reuters

Teeth hurt? It could be because of a 500-million-year-old fish
Teeth hurt? It could be because of a 500-million-year-old fish

Observer

time24-05-2025

  • Observer

Teeth hurt? It could be because of a 500-million-year-old fish

Ever wondered why our teeth are so sensitive to pain or even just cold drinks? It might be because they first evolved for a very different purpose than chewing half a billion years ago, a study suggested Wednesday. The exact origin of teeth -- and what they were for -- has long proved elusive to scientists. Their evolutionary precursors are thought to be hard structures called odontodes which first appeared not in mouths but on the external armour of the earliest fish around 500 million years ago. Even today, sharks, stingrays and catfish are covered in microscopic teeth that make their skin rough like sandpaper. There are several theories for why these odontodes first appeared, including that they protected against predators, helped with movement through the water or stored minerals. But the new study published in the journal Nature supports the hypothesis that they were originally used as sensory organs which transmitted sensations to nerves. At first, the study's lead author Yara Haridy was not even trying to hunt down the origins of teeth. Instead the postdoctoral researcher at the University of Chicago was probing another major question puzzling the field of palaeontology: what is the oldest fossil of an animal with a backbone? Haridy asked museums across the United States to send her hundreds of vertebrate specimens -- some so small they could fit on the tip of a toothpick -- so she could analyse them using a CT scanner. She began focusing on dentine, the inner layer of teeth that sends sensory information to nerves in the pulp. - Things get fishy - A fossil from the Cambrian period called Anatolepis seemed to be the answer she was looking for. Its exoskeleton has pores underneath the odontodes called tubules that could indicate they once contained dentine. This has previously led paleontologists to believe that Anatolepis was the first known fish in history. But when Haridy compared it to the other specimens she had scanned, she found that the tubules looked much more like sensory organs called sensilla of arthropods, a group of animals that includes crustaceans and insects. The mighty Anatolepis was therefore demoted to the rank of an invertebrate. For modern arthropods such as crabs, scorpions and spiders, sensilla are used to perceive temperature, vibration and even smell. How little these features have changed over time suggests they have been serving these same functions for half a billion years. The researchers said they found "striking" similarities between these features in Anatolepis and vertebrate fish from around 465 million years ago -- as well as some better-known fish. "We performed experiments on modern fish that confirmed the presence of nerves in the outside teeth of catfish, sharks and skates," Haridy told AFP. This shows that "tooth tissues of odontodes outside the mouth can be sensitive -- and perhaps the very first odontodes were as well," she added. "Arthropods and early vertebrates independently evolved similar sensory solutions to the same biological and ecological problem." Senior study author Neil Shubin, also from the University of Chicago, said that these primitive animals evolved in "a pretty intense predatory environment". "Being able to sense the properties of the water around them would have been very important," Shubin said in a statement. Haridy explained that over time, fish evolved jaws and "it became advantageous to have pointy structures" near their mouth. "Little by little some fish with jaws had pointy odontodes at the edge of the mouth and then eventually some were directly in the mouth," she said. "A toothache is actually an ancient sensory feature that may have helped our fishy ancestors survive!" —AFP

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store