logo
Deep-Sea Discovery: Submersible Finds Creatures Thriving At The Bottom Of The Ocean

Deep-Sea Discovery: Submersible Finds Creatures Thriving At The Bottom Of The Ocean

Yahoo2 days ago
An underwater voyage has revealed a network of creatures thriving at the bottom of deep-sea ocean trenches.
In these extreme environments, the crushing pressure, scant food and lack of sunlight can make it hard to survive. Scientists know that tiny microbes prosper there, but less is known about evidence of larger marine life.
Researchers traveling along the Kuril–Kamchatka and Aleutian trenches in the northwest Pacific Ocean used a submersible to find tubeworms and mollusks flourishing at over 31,000 feet deep. The deepest part of the ocean goes down to about 36,000 feet.
(MORE: Watch Sea Lions Evacuate During Earthquake)
Scientists had surveyed this area before and had hints that larger creatures might live at such depths. The new discovery confirms those suspicions and shows just how extensive the communities are, said Julie Huber, a deep sea microbiologist with Woods Hole Oceanographic Institution.
'Look how many there are, look how deep they are," said Huber, who was not involved with the research. 'They don't all look the same and they're in a place that we haven't had good access to before.'
The findings were published Wednesday in the journal Nature.
(MORE: Changing Tides Reveal Hawaiian Petroglyphs)
In the absence of light to make their own food, many trench-dwellers big and small survive on key elements like carbon that trickle down from higher in the ocean.
Scientists think microbes in this new network may instead be capitalizing on carbon that's accumulated in the trench over time, processing it to create chemicals that seep through cracks in the ocean floor. The tubeworms and mollusks may survive by eating those tiny creatures or living with them and snacking on the products of their labor, scientists said.
With this discovery, future studies will focus on how these deep-sea creatures adapted to survive in such extreme conditions and how exactly they harness chemical reactions for food, study authors Mengran Du with the Chinese Academy of Sciences and Vladimir Mordukhovich with the Russian Academy of Sciences said in a statement.
Their existence challenges 'long-standing assumptions about life's potential at extreme depths,' the authors said.
Solve the daily Crossword
Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Flu, COVID can reawaken dormant breast cancer cells: Study
Flu, COVID can reawaken dormant breast cancer cells: Study

The Hill

time6 hours ago

  • The Hill

Flu, COVID can reawaken dormant breast cancer cells: Study

Respiratory infections like COVID-19 and the flu can activate dormant cancer cells in breast cancer patients who are in remission, new research finds. The study, published in Nature, found that common viruses can reawaken small numbers of dormant breast cancer cells in the lungs. Researchers began investigating the link after the team noticed that U.K. patients who were in remission from breast cancer and tested positive for COVID later showed a two-fold increase in cancer-related deaths. They also analyzed a U.S. database that included nearly 37,000 patients and found that COVID infection was associated with a more than 40 percent increased risk of metastatic breast cancer in the lungs. Studies on mice found that influenza and COVID infections triggered dormant breast cancer cells after just days of infection. Within two weeks, researchers observed 'massive expansion' of the cancer cells into metastatic lesions by more than 100 times. Scientists have suspected that common viruses like Epstein-Barr can trigger some cancers. Human papillomavirus (HPV) is already documented to trigger cervical cancer. When it comes to breast cancer, however, research on human cells was limited, and it's not entirely known how the virus triggers the disease to spread. The findings suggest the body's immune response plays a role. After breast cancer goes into remission, a tiny number of cells remain dormant in lung, bone and liver tissue. Sometimes, inflammation can wake up the cells. In the mouse experiments, both influenza A and coronavirus only reawakened dormant cells if they triggered an inflammatory cytokine response. More research is needed to see if vaccination makes a difference when it comes to the possibility of reawakening dormant cells.

Wild Video Captures Alien-Like Creatures Thriving in the Deepest Ocean Ecosystem
Wild Video Captures Alien-Like Creatures Thriving in the Deepest Ocean Ecosystem

Gizmodo

timea day ago

  • Gizmodo

Wild Video Captures Alien-Like Creatures Thriving in the Deepest Ocean Ecosystem

Researchers recently dove more than 6 miles beneath the surface of the northwest Pacific Ocean to explore the bottom of two submarine trenches. In this harsh marine environment, they discovered flourishing communities of chemosynthesis-based sea creatures—the deepest and most extensive ones ever found. The groundbreaking findings, published in the journal Nature on Wednesday, July 30, include photos and footage of the alien-like organisms going about their business in two of the most unforgiving ecosystems on the planet. No light touches the bottom of the Kuril-Kamchatka trench or the Aleutian trench. These organisms survive by converting chemicals to energy rather than food or sunlight. Scientists have long believed that chemosynthesis-based communities are widespread in hadal trenches, but actually finding them has proved challenging, according to the study. 'It's exciting—especially for a deep sea scientist—to go to a place that human beings have not explored,' lead author Xiaotong Peng, deputy director of the Institute of Deep-sea Science and Engineering at the Chinese Academy of Sciences, told BBC News. 'It's a great opportunity to discover new things. And what we saw was quite amazing.' Hadal trenches are depressions in the seabed that reach depths roughly between 20,000 feet (6,000 meters) and 36,000 feet (11,000 meters). They form along subduction zones where the edge of one tectonic plate slides—or subducts—beneath another. The Kuril-Kamchatka Trench plunges over 31,000 feet (9,600 meters) beneath the ocean surface and stretches from a point off the coast of Hokkaido, Japan, to its intersection with the Aleutian Trench near Russia's Commander Islands. The Aleutian is slightly less deep, with a maximum depth of about 27,000 feet (8,000 meters), but it's significantly longer, extending from its intersection with the Kuril-Kamchatka to the Gulf of Alaska. From July to August 2024, Peng and his colleagues conducted a series of dives aboard a submersible called Fendouzhe. This manned vessel is capable of reaching the deepest parts of the ocean at nearly 36,000 feet (11,000 meters). At the bottom of the trenches, they discovered thriving chemosynthesis-based communities associated with abundant methane seeps—cracks in the seafloor that emit methane gas into the water column. These communities were dominated by marine tube worms called siboglinid polychaetes and mollusks called bivalves that synthesize energy from fluids rich in hydrogen sulfide and methane. They were extensive, spanning more than 1,500 miles (2,500 kilometers) at depths ranging from roughly 20,000 feet (5,800 meters) to 31,000 feet (9,533 meters). The discovery challenges the conventional view of hadal ecosystems as being sustained by organic materials sinking from the ocean surface, according to a Nature briefing on the study. This research shows that hadal-seep ecosystems are a hallmark feature of hadal trenches, home to abundant populations of rare chemosynthesis-based species 'As more hadal chemosynthesis-based communities are discovered, we could uncover previously undocumented species, as well as currently unknown interactions between animals and microorganisms that have evolved under the high-pressure conditions of the hadal zone,' the Nature briefing states.

Bizarre New Creatures Discovered 30,000 Feet Under the Sea
Bizarre New Creatures Discovered 30,000 Feet Under the Sea

Yahoo

timea day ago

  • Yahoo

Bizarre New Creatures Discovered 30,000 Feet Under the Sea

The Titanic lies about 12,500 feet under the ocean. The pressure down there is so immense that even submersibles supposedly built for those conditions can, as we know, tragically fail. Now imagine taking a sub nearly three times deeper. That's what an international team of scientists did last summer. Led by the Chinese Academy of Sciences, the researchers took a manned submersible to the bottom of deep-sea trenches in an area in the northwest Pacific Ocean, roughly between Japan and Alaska, reaching a depth of more than 31,000 feet. The researchers weren't looking for a shipwreck. They were interested in what else might be lurking on the seafloor, which is so deep that no light can reach it. It was there that they found something remarkable: entire communities of animals, rooted in organisms that are able to derive energy not from sunlight but from chemical reactions. Through a process called chemosynthesis, deep-sea microbes are able to turn compounds like methane and hydrogen sulfide into organic compounds, including sugars, forming the base of the food chain. The discovery was published in the journal Nature. This was the deepest community of chemosynthetic life ever discovered, according to Mengran Du, a study author and researcher at the Institute of Deep-sea Science and Engineering at the Chinese Academy of Sciences. Using a deep-sea vessel called Fendouzhe, the researchers encountered abundant wildlife communities, including fields of marine tube worms peppered with white marine snails. The worms have a symbiotic relationship with chemosynthetic bacteria that live in their bodies. Those bacteria provide them with a source of nutrients in exchange for, among other things, a stable place to live. Among the tube worms the scientists encountered white, centipede-like critters — they're also a kind of worm, in the genus macellicephaloides — as well as sea cucumbers. The researchers also found a variety of different clams on the seafloor, often alongside anemones. Similar to the tube worms, the clams depend on bacteria within their shells to turn chemical compounds like methane and hydrogen sulfide that are present in the deep sea into food. Unlike other deep-sea ecosystems — which feed on dead animals and other organic bits that fall from shallower waters — these trench communities are likely sustained in part by methane produced by microbes buried under the seafloor, the authors said. That suggests that wildlife communities may be more common in these extremely deep trenches than scientists once thought. 'The presence of these chemosynthetic ecosystems challenge long-standing assumptions about life's potential at extreme depths,' Du told Vox in an email. —Benji Jones, Vox ALSO ON YALE E360 Will U.S. Push on Seabed Mining End Global Consensus on Oceans? Solve the daily Crossword

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store