Nuclear fusion record smashed as German scientists take 'a significant step forward' to near-limitless clean energy
A recently concluded experimental campaign at the Wendelstein 7-X stellarator at the Max Planck Institute for Plasma Physics (IPP) in Greifswald, Germany has smashed previous fusion records and set a new benchmark for reactor performances.
Nuclear fusion offers a tantalizing promise of unlimited clean energy. By smashing together isotopes (or different versions) of hydrogen at incredibly high temperatures, the resulting superheated plasma of electrons and ions fuses into heavier atoms, releasing a phenomenal amount of energy in the process.
However, while this fusion reaction is self-sustaining under the extraordinary temperatures and pressures within stars, recreating these conditions on Earth is a huge technical challenge — and current reactor concepts still consume more energy than they are able to produce.
Stellarators are one of the most promising reactor designs, so named for their mimicry of reactions in the sun. They use powerful external magnets to control the high-energy plasma within a ring-shaped vacuum chamber and maintain a stable, high pressure. Unlike simpler tokamak reactors — which pass a high current through the plasma to generate the required magnetic field — stellarators' external magnets are better at stabilizing the plasma through the fusion reactions, a feature that will ultimately be necessary when translating the technology to commercial power plants.
In the recent experiments, the W7-X stellarator outperformed previous benchmarks set by the decommissioned tokamak reactors JT60U in Japan and JET in the UK, especially over how long the plasma can be sustained.
Related: Nuclear fusion could be the clean energy of the future
Most notably, the international team revealed that the reactor had reached a new record high triple product — a key metric for the success of fusion power generators. The triple product is a combination of the density of particles in the plasma, the temperature required for these particles to fuse, and the energy confinement time (a measure of how well the thermal energy is held by the system). A certain minimum value called the Lawson criterion marks the point at which the reaction produces more energy than it uses and becomes self-sustaining, so a higher triple product indicates a more efficient reaction.
"The new record is a tremendous achievement by the international team," said Thomas Klinger, Head of Operations at Wendelstein 7-X and Head of Stellarator Dynamics and Transport at IPP in a statement. "Elevating the triple product to tokamak levels during long plasma pulses marks another important milestone on the way toward a power-plant-capable stellarator."
Key to the success of this latest milestone was the development of a new fuel pellet injector that combined continuous refueling of the reactor with pulsed heating to maintain the required plasma temperature. Over a 43-second period, 90 frozen hydrogen pellets were fired into the plasma at up to 2,600 feet (800 metres) per second, roughly the speed of a bullet. Pre-programmed pulses of powerful microwaves heated the plasma, which reached a peak temperature of 30 million degrees C, and this coordination between the microwave pulses and the pellet injection crucially extended how long the plasma could be stably maintained.
RELATED STORIES
—Physicists solve nuclear fusion mystery with mayonnaise
—There's 90,000 tons of nuclear waste in the US. How and where is it stored?
—Just a fraction of the hydrogen hidden beneath Earth's surface could power Earth for 200 years, scientists find
This same campaign also increased the energy turnover of the reaction to 1.8 gigajoules over a six-minute run, smashing the reactor's previous record of 1.3 gigajoules from February 2023. Energy turnover is a combination of the heating power and plasma duration of a fusion reactor and an indication of the reactor's ability to sustain the high-energy plasma. It is therefore another crucial parameter for future power plant operation. The new value even exceeds the record achieved by the Experimental Advanced Superconducting Tokamak (EAST) in China earlier this year, further evidencing stellarators' potential.
"The records of this experimental campaign are much more than mere numbers. They represent a significant step forward in validating the stellarator concept—made possible through outstanding international collaboration," summarized Robert Wolf, Head of Stellarator Heating and Optimization at IPP in statement.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Scientific American
an hour ago
- Scientific American
Record-Breaking Results Bring Fusion Power Closer to Reality
A twisting ribbon of hydrogen gas, many times hotter than the surface of the sun, has given scientists a tentative glimpse of the future of controlled nuclear fusion —a so-far theoretical source of relatively 'clean' and abundant energy that would be effectively fueled by seawater. The ribbon was a plasma inside Germany's Wendelstein 7-X, an advanced fusion reactor that set a record last May by magnetically 'bottling up' the superheated plasma for a whopping 43 seconds. That's many times longer than the device had achieved before. It's often joked that fusion is only 30 years away—and always will be. But the latest results indicate that scientists and engineers are finally gaining on that prediction. 'I think it's probably now about 15 to 20 years [away],' says University of Cambridge nuclear engineer Tony Roulstone, who wasn't involved in the Wendelstein experiments. 'The superconducting magnets [that the researchers are using to contain the plasma] are making the difference.' On supporting science journalism If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today. And the latest Wendelstein result, while promising, has now been countered by British researchers. They say the large Joint European Torus (JET) fusion reactor near Oxford, England, achieved even longer containment times of up to 60 seconds in final experiments before its retirement in December 2023. These results have been kept quiet until now but are due to be published in a scientific journal soon. According to a press release from the Max Planck Institute for Plasma Physics in Germany, the as yet unpublished data make the Wendelstein and JET reactors 'joint leaders' in the scientific quest to continually operate a fusion reactor at extremely high temperatures. Even so, the press release notes that JET's plasma volume was three times larger than that of the Wendelstein reactor, which would have given JET an advantage—a not-so-subtle insinuation that, all other things being equal, the German project should be considered the true leader. This friendly rivalry highlights a long-standing competition between devices called stellarators, such as the Wendelstein 7-X, and others called tokamaks, such as JET. Both use different approaches to achieve a promising form of nuclear fusion called magnetic confinement, which aims to ignite a fusion reaction in a plasma of the neutron-heavy hydrogen isotopes deuterium and tritium. The latest results come after the successful fusion ignition in 2022 at the National Ignition Facility (NIF) near San Francisco, which used a very different method of fusion called inertial confinement. Researchers there applied giant lasers to a pea-sized pellet of deuterium and tritium, triggering a fusion reaction that gave off more energy than it consumed. (Replications of the experiment have since yielded even more energy.) The U.S. Department of Energy began constructing the NIF in the late 1990s, with the goal to develop inertial confinement as an alternative to testing thermonuclear bombs, and research for the U.S.'s nuclear arsenal still makes up most of the facility's work. But the ignition was an important milestone on the path toward controlled nuclear fusion—a 'holy grail' of science and engineering. 'The 2022 achievement of fusion ignition marks the first time humans have been able to demonstrate a controlled self-sustained burning fusion reaction in the laboratory—akin to lighting a match and that turning into a bonfire,' says plasma physicist Tammy Ma of the Lawrence Livermore National Laboratory, which operates the NIF. 'With every other fusion attempt prior, the lit match had fizzled.' The inertial confinement method used by the NIF—the largest and most powerful laser system in the world—may not be best suited for generating electricity, however (although it seems unparalleled for simulating thermonuclear bombs). The ignition in the fuel pellet did give off more energy than put into it by the NIF's 192 giant lasers. But the lasers themselves took more than 12 hours to charge before the experiment and consumed roughly 100 times the energy released by the fusing pellet. In contrast, calculations suggest a fusion power plant would have to ignite about 10 fuel pellets every second, continuously, for 24 hours a day to deliver utility-scale service. That's an immense engineering challenge but one accepted by several inertial fusion energy startups, such as Marvel Fusion in Germany; other start-ups, such as Xcimer Energy in the U.S., meanwhile, propose using a similar system to ignite just one fuel pellet every two seconds. Ma admits that the NIF approach faces difficulties, but she points out it's still the only fusion method on Earth to have demonstrated a net energy gain: 'Fusion energy, and particularly the inertial confinement approach to fusion, has huge potential, and it is imperative that we pursue it,' she says. Instead of igniting fuel pellets with lasers, most fusion power projects—like the Wendelstein 7-X and the JET reactor—have chosen a different path to nuclear fusion. Some of the most sophisticated, such as the giant ITER project being built in France, are tokamaks. These devices were first invented in the former Soviet Union and get their name from a Russian acronym for the doughnut-shaped rings of plasma they contain. They work by inducing a powerful electric current inside the superheated plasma doughnut to make it more magnetic and prevent it from striking and damaging the walls of the reactor chamber—the main challenge for the technology. The Wendelstein 7-X reactor, however, is a stellarator—it uses a related, albeit more complicated, design that doesn't induce an electric current in the plasma but instead tries to control it with powerful external magnets alone. The result is that the plasmas in stellarators are more stable within their magnetic bottles. Reactors like the Wendelstein 7-X aim to operate for a longer period of time than tokamaks can without damaging the reactor chamber. The Wendelstein researchers plan to soon exceed a minute and eventually to run the reactor continuously for more than half an hour. 'There's really nothing in the way to make it longer,' explains physicist Thomas Klinger, who leads the project at the Max Planck Institute for Plasma Physics. 'And then we are in an area where nobody has ever been before.' The overlooked results from the JET reactor reinforce the magnetic confinement approach, although it's still not certain if tokamaks or stellarators will be the ultimate winner in the race for controlled nuclear fusion. Plasma physicist Robert Wolf, who heads the optimization of the Wendelstein reactor, thinks future fusion reactors might somehow combine the stability of stellarators with the relative simplicity of tokamaks, but it's not clear how: 'From a scientific view, it is still a bit early to say.' Several private companies have joined the fusion race. One of the most advanced projects is from the Canadian firm General Fusion, which is based near Vancouver in British Columbia. The company hopes its unorthodox fusion reactor, which uses a hybrid technology called magnetized target fusion, or MTF, will be the first to feed electric power to the grid by the 'early to mid-2030s,' according to its chief strategy officer Megan Wilson. 'MTF is the fusion equivalent of a diesel engine: practical, durable and cost-effective,' she says. University of California, San Diego, nuclear engineer George Tynan says private money is flooding the field: 'The private sector is now putting in much more money than governments, so that might change things," he says. 'In these 'hard tech' problems, like space travel and so on, the private sector seems to be more willing to take more risk.' Tynan also cites Commonwealth Fusion Systems, a Massachusetts Institute of Technology spin-off that plans to build a fusion power plant called ARC in Virginia. The proposed ARC reactor is a type of compact tokamak that intends to start producing up to 400 megawatts of electricity—enough to power about 150,000 homes—in the 'early 2030s,' according to a MIT News article. Roulstone thinks the superconducting electromagnets increasingly used in magnetic confinement reactors will prove to be a key technology. Such magnets are cooled with liquid helium to a few degrees above absolute zero so that they have no electrical resistance. The magnetic fields they create in that state are many times more powerful than those created by regular electromagnets, so they give researchers greater control over superheated hydrogen plasmas. In contrast, Roulstone fears the NIF's laser approach to fusion may be too complicated: 'I am a skeptic about whether inertial confinement will work,' he says. Tynan, too, is cautious about inertial confinement fusion, although he recognizes that NIF's fusion ignition was a scientific breakthrough: 'it demonstrates that one can produce net energy gain from a fusion reaction.' He sees 'viable physics' in both the magnet and laser approaches to nuclear fusion but warns that both ideas still face many years of experimentation and testing before they can be used to generate electricity. 'Both approaches still have significant engineering challenges,' Tynan says. 'I think it is plausible that both can work, but they both have a long way to go.'
Yahoo
a day ago
- Yahoo
An enormous 'X' and 'V' will grace the moon's surface on July 2. Here's how to see them
When you buy through links on our articles, Future and its syndication partners may earn a commission. The nights surrounding the first quarter moon phase on July 2 present a good opportunity to spot colossal 'X' and 'V' features emblazoned on the lunar surface. This month's first quarter phase occurs at 11:41 p.m. EDT on July 2 (0341 GMT on July 3), at which time the right side of the half-lit lunar disk will be illuminated by direct sunlight from the perspective of viewers in the northern hemisphere on Earth. At this time, the sun shines at such an angle to make it appear as if there is a gigantic 'V' and 'X' marking the barren lunar surface. This kind of phenomenon is referred to as a 'clair-obscur' effect and occurs when the interplay between light and shadow leads to the chance formation of familiar shapes on the moon's craggy terrain. The lunar letters are visible for roughly four hours in the run-up to each first quarter moon phase and are at their most impressive when seen just on the 'night' side of the terminator, with their upper reaches kissed by the sun's light. Try and find the lunar 'X' and 'V' on the lunar disk at sunset on July 2 and be sure to keep checking back to see how these shapes evolve over time. If you miss the letters on the night side of the terminator, there's no need to lose hope, as they'll continue to be visible for a brief period after they pass to the 'day side' of the moon. The lunar X is an optical effect formed when sunlight strikes elevated rim sections of the Bianchini, Purbach and La Caille Craters around the first quarter moon phase, according to stargazing website The feature can be found around 25 degrees south of the lunar equator close to the terminator, which is the line separating the dayside and nightside of the moon, close to the prominent Werner and Aliacensis Craters. To find the lunar 'V', moongazers must follow the line of the terminator up to a point less than 10 degrees above the lunar equator to find the partially shadowed form of the Ukert Crater. Both objects can be spotted through a small backyard telescope with a 6-inch aperture, though a larger scope will help resolve detail in the myriad craters and broken terrain dotting the surrounding moonscapes. TOP TELESCOPE PICK Want to see the lunar X and V? The Celestron NexStar 4SE is ideal for beginners wanting quality, reliable and quick views of celestial objects. For a more in-depth look at our Celestron NexStar 4SE review. Stargazers interested in exploring the lunar surface should check out our guides to the best telescopes and binoculars available in 2025. Photographers interested in capturing the moon's surface should also read our roundup of the best cameras and lenses for astrophotography. This article was updated at 3:10 a.m. EDT (0810 GMT) on July 2 to change 'June 2' to the correct date of 'July 2'. Editor's Note: If you capture a picture of the letters on the moon and want to share it with readers, then please send your photo(s), comments, and your name and location to spacephotos@
Yahoo
a day ago
- Yahoo
Space calendar 2025: Rocket launches, skywatching events, missions & more!
When you buy through links on our articles, Future and its syndication partners may earn a commission. 2025 is a busy year for spaceflight and exploration with countless launches, mission milestones, industry conventions and skywatching events to look forward to. With so much going on, it's hard to keep track of everything. Never fear — keep up with the latest events in our 2025 space calendar. You can also Find out what's up in the night sky this month with our visible planets guide and skywatching forecast. Please note: Launch dates are subject to change and will be updated throughout the year as firmer dates arise. Please DO NOT schedule travel based on a date you see here. Launch dates are collected from NASA events, ESA news, Roscosmos space launch schedule, Spaceflight Now launch schedule, Everyday Astronaut, Supercluster and others. Related: Wondering what happened today in space history? Check out our "On This Day in Space" video! Is there a rocket launch today?