
Researchers figure out what's caused devastating sea star epidemic
In 2013, something began ravaging sea stars along the West Coast, turning them into decaying, fragmented carcasses. Over the next few years, the wasting disease (SSWD) killed billions of animals along the shore, transforming entire marine ecosystems.
One species was hit especially hard: Pycnopodia helianthoides, more commonly known as the sunflower sea star. Scientists estimate the global population plummeted by 94% since 2013. California alone lost about 99% of its sunflower sea stars. For over a decade, nobody knew what was responsible.
In their paper in Nature Ecology & Evolution, researchers have now identified the culprit behind the devastating epidemic — and with it, a path forward for restoration.
'This was a big deal for us,' said Alyssa Gehman, a marine disease ecologist at Hakai Institute and the University of British Columbia and senior author on the study. 'When we started these experiments, I knew we would learn more, but I honestly wasn't convinced we would actually find the causative agent of disease.'
The breakthrough came during a routine meeting between Gehman and two collaborators, Grace Crandall and Melanie Prentice. They had recently tested whether heat-treated coelomic fluid — the internal body fluid of a sea star — could still trigger the disease when injected into a healthy sea star. When the injected sea stars stayed healthy, it confirmed that the disease was being caused by something that was alive.
To find out what that 'something' was, the team turned to a set of techniques that reveals which genes are being expressed by what microorganisms. When they compared healthy and infected animals, one group consistently stood out—the Vibrios, a type of bacteria commonly found in marine environments.
Knowing there are many Vibrios, the researchers were curious whether the wasting sickness could be tied to one in particular. Prentice ran the species-level analysis, and the result floored them.
'The whole list was Vibrio pectinocida. And it was in all of our six stars and it was in none of our controls,' Gehman said. It was 'mind-blowingly clear' that this bacteria was causing the disease, she said.
For California's kelp forests, and the conservation groups trying to save them, this news is a major turning point.
Sunflower sea stars are considered a keystone species, meaning they are critical in regulating the stability and diversity of their ecosystems. One of their most important roles is controlling purple sea urchin populations, a species with a notoriously voracious appetite.
'They can mow down a kelp forest and then actually remain in that ecosystem without a food source,' said Prentice, a marine biologist and study co-author. 'They enter almost like a zombie state until the kelp regrows — and then they eradicate it again.'
Sunflower sea stars used to prey on the urchins, keeping their population in check. However, when wasting disease effectively wiped out their main predator, the sea urchins exploded in number, decimating kelp forests and transforming once-lush underwater habitats into so-called 'urchin barrens.'
'Kelp forests are the most important ecosystem on our coast because they house over 800 species of animals,' said Nancy Caruso, marine biologist and founder of the nonprofit Get Inspired. 'Essentially, they're the condos and apartment complexes of the animals that live on our coastline — and when they disappear, they have no place to live.'
Kelp forests also filter water, store carbon, and protect coastal communities from storms and erosion, making them, as Prentice described, 'an ally in our fight against the climate crisis.'
Since the 2013 outbreak, areas like Northern California have lost more than 95% of their kelp forest cover. Several sites are still considered ecological collapse zones.
Researchers say recovery can now be more targeted.
Prentice is currently developing a diagnostic test similar to a COVID rapid test, which could help screen animals and seawater for the presence of Vibrio pectinocida before conservationists reintroduce sea stars into the wild.
'That's going to be powerful not just for research, but for management,' she said. 'Now we can actually test animals before we move them — or test the water at a potential outplanting site and say, is this a good place for reintroduction?'
Other teams are looking at breeding disease-resistant sea stars. Surviving populations may have natural immunity, which could help shape more resilient captive-rearing programs.
At the Aquarium of the Pacific in Long Beach, which cares for some of the surviving sunflower stars, the new findings could help reshape priorities.
'It sharpens our focus on what it might take to reintroduce these animals in a way that is thoughtful, informed, and sustainable,' said Johnathan Casey, the aquarium's curator of fish and invertebrates.
'With each new piece of the puzzle, we feel we're getting closer to a future where sunflower stars can once again thrive along our coastline.'
Sunflower sea stars used to be everywhere — on sand, rocks, kelp beds, and seagrass beds. For Gehman, that's the point. She hopes the findings help people realize that even the most abundant species can disappear very quickly.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Chicago Tribune
4 hours ago
- Chicago Tribune
Scientists say they have solved the mystery of what killed more than 5 billion sea stars
WASHINGTON — Scientists say they have at last solved the mystery of what killed more than 5 billion sea stars off the Pacific coast of North America in a decade-long epidemic. Sea stars – often known as starfish – typically have five arms and some species sport up to 24 arms. They range in color from solid orange to tapestries of orange, purple, brown and green. Starting in 2013, a mysterious sea star wasting disease sparked a mass die-off from Mexico to Alaska. The epidemic has devastated more than 20 species and continues today. Worst hit was a species called the sunflower sea star, which lost around 90% of its population in the outbreak's first five years. 'It's really quite gruesome,' said marine disease ecologist Alyssa Gehman at the Hakai Institute in British Columbia, Canada, who helped pinpoint the cause. Healthy sea stars have 'puffy arms sticking straight out,' she said. But the wasting disease causes them to grow lesions and 'then their arms actually fall off.' The culprit? Bacteria that has also infected shellfish, according to a study published Monday in the journal Nature Ecology and Evolution. The findings 'solve a long-standing question about a very serious disease in the ocean,' said Rebecca Vega Thurber, a marine microbiologist at University of California, Santa Barbara, who was not involved in the study. It took more than a decade for researchers to identify the cause of the disease, with many false leads and twists and turns along the way. Early research hinted the cause might be a virus, but it turned out the densovirus that scientists initially focused on was actually a normal resident inside healthy sea stars and not associated with disease, said Melanie Prentice of the Hakai Institute, co-author of the new study. Other efforts missed the real killer because researchers studied tissue samples of dead sea stars that no longer contained the bodily fluid that surrounds the organs. But the latest study includes detailed analysis of this fluid, called coelomic fluid, where the bacteria Vibrio pectenicida were found. 'It's incredibly difficult to trace the source of so many environmental diseases, especially underwater,' said microbiologist Blake Ushijima of the University of North Carolina, Wilmington, who was not involved in the research. He said the detective work by this team was 'really smart and significant.' Now that scientists know the cause, they have a better shot at intervening to help sea stars. Prentice said that scientists could potentially now test which of the remaining sea stars are still healthy — and consider whether to relocate them, or breed them in captivity to later transplant them to areas that have lost almost all their sunflower sea stars. Scientists may also test if some populations have natural immunity, and if treatments like probiotics may help boost immunity to the disease. Such recovery work is not only important for sea stars, but for entire Pacific ecosystems because healthy starfish gobble up excess sea urchins, researchers say. Sunflower sea stars 'look sort of innocent when you see them, but they eat almost everything that lives on the bottom of the ocean,' said Gehman. 'They're voracious eaters.' With many fewer sea stars, the sea urchins that they usually munch on exploded in population – and in turn gobbled up around 95% of the kelp forest s in Northern California within a decade. These kelp forests provide food and habitat for a wide variety of animals including fish, sea otters and seals. Researchers hope the new findings will allow them to restore sea star populations — and regrow the kelp forests that Thurber compares to 'the rainforests of the ocean.'
Yahoo
4 hours ago
- Yahoo
Researchers figure out what's caused devastating sea star epidemic
A study published Monday offers clarity on a more than decade-long marine mystery: What has been killing the velvety sunflower sea star? In 2013, something began ravaging sea stars along the West Coast, turning them into decaying, fragmented carcasses. Over the next few years, the wasting disease (SSWD) killed billions of animals along the shore, transforming entire marine ecosystems. A network of researchers formed to focus on recovery. One species was hit especially hard: Pycnopodia helianthoides, more commonly known as the sunflower sea star. Scientists estimate the global population plummeted by 94% since 2013. California alone lost about 99% of its sunflower sea stars. For over a decade, nobody knew what was responsible. In their paper in Nature Ecology & Evolution, researchers have now identified the culprit behind the devastating epidemic — and with it, a path forward for restoration. 'This was a big deal for us,' said Alyssa Gehman, a marine disease ecologist at Hakai Institute and the University of British Columbia and senior author on the study. 'When we started these experiments, I knew we would learn more, but I honestly wasn't convinced we would actually find the causative agent of disease.' The breakthrough came during a routine meeting between Gehman and two collaborators, Grace Crandall and Melanie Prentice. They had recently tested whether heat-treated coelomic fluid — the internal body fluid of a sea star — could still trigger the disease when injected into a healthy sea star. When it didn't, and the injected sea stars stayed healthy, it confirmed that the disease was being caused by something that was alive. To find out what that "something" was, the team turned to a set of techniques that reveals which genes are being expressed by what microorganisms. When they compared healthy and infected animals, one group consistently stood out—the Vibrios, a type of bacteria commonly found in marine environments. Knowing there are many Vibrios, the researchers were curious whether the wasting sickness could be tied to one in particular. Prentice ran the species-level analysis, and the result floored them. 'The whole list was Vibrio pectinocida. And it was in all of our six stars and it was in none of our controls,' Gehman said. It was "mind-blowingly clear" that this bacteria was causing the disease, she said. For California's kelp forests, and the conservation groups trying to save them, this news is a major turning point. Sunflower sea stars are considered a keystone species, meaning they are critical in regulating the stability and diversity of their ecosystems. One of their most important roles is controlling purple sea urchin populations, a species with a notoriously voracious appetite. 'They can mow down a kelp forest and then actually remain in that ecosystem without a food source,' said Prentice, a marine biologist and study co-author. 'They enter almost like a zombie state until the kelp regrows, and then they eradicate it again.' Sunflower sea stars used to prey on the urchins, keeping them in check. But when wasting disease effectively wiped out their main predator, the sea urchins exploded in number, decimating kelp forests and transforming once-lush underwater habitats into so-called 'urchin barrens.' 'Kelp forests are the most important ecosystem on our coast because they house over 800 species of animals,' said Nancy Caruso, marine biologist and founder of the nonprofit Get Inspired. 'Essentially, they're the condos and apartment complexes of the animals that live on our coastline. When they disappear, the animals have no place to live.' Kelp forests also filter water, store carbon, and protect coastal communities from storms and erosion, making them an ally in addressing climate change, Prentice said. Since the 2013 outbreak, areas like Northern California have lost more than 95% of their kelp forest cover. Several sites are still considered ecological collapse zones. Some scientists trying to recover sunflower sea stars see the finding as a strong guide for future research — and efforts to boost the decimated keystone species. For example, it could help address concerns California wildlife officials have had that stars bred in captivity might have the disease and carry it into wild waters if they are moved, conservationists said. Prentice is currently developing something similar to a COVID rapid test that could help screen animals and seawater for the presence of Vibrio pectinocida before they're introduced into the ocean. That beats the cumbersome process of monitoring them to make sure they're healthy enough to be released. 'That's going to be powerful not just for research, but for management,' she said. 'Now we can actually test animals before we move them, or test the water at a potential outplanting site and say, is this a good place for reintroduction?' Researchers also plan to investigate whether certain stars are resistant to the disease, opening the door to breeding animals that are more resilient. Could exposing them to a low dose of the disease do the trick? Already there have been promising strides in conservation. Starting in 2019, Jason Hodin, a senior research scientist at the University of Washington's Friday Harbor Laboratories, spearheaded an effort to see if the hefty stars could be raised in captivity. They could, and the success paved the way for a network of scientists trying to recover the species. Last year, his team became the first (and currently only) to unleash lab-bred stars into the ocean, dispatching 10 one-year-olds and 10 two-year-olds near the dock of their lab on San Juan Island. None have been seen sick or dying. At least three of the two-year-olds were spotted just a few months ago. It's 'not only showing that the stars can thrive in the wild, but that if you put them into an area that they like, then they stick around,' he said. Now he's hoping for approval from Washington's wildlife agency to release stars in a small urchin barren developing on the west side of the island where his lab is located. The idea is to see if introducing them where urchins have taken over, and where the kelp is getting hit, can help restore the kelp. That work could begin this fall. Scientists in California are moving in the same direction, but haven't yet planted stars in the wild. Researchers with the Nature Conservancy may release stars in cages in Monterey Bay as soon as September, replicating a step Hodin's team took before sending them out on their own. They're waiting on approval from the California Department of Fish and Wildlife. There also have been hopeful sightings of wild stars in California waters. Recently, a sunflower sea star was spotted in Sonoma County, which Hodin estimated is the furthest south anyone has spotted them in seven years. 'It takes a lot of stars to make a healthy population, so just having a few around isn't necessarily enough to get a good sort of population going,' Hodin said, 'but at least it's a sign that the species is still around and that with some assistance, we might be able to bolster these populations.' At the Aquarium of the Pacific in Long Beach, which cares for some of the surviving sunflower stars, the new findings could help reshape priorities. 'It sharpens our focus on what it might take to reintroduce these animals in a way that is thoughtful, informed, and sustainable,' said Johnathan Casey, the aquarium's curator of fish and invertebrates. 'With each new piece of the puzzle, we feel we're getting closer to a future where sunflower stars can once again thrive along our coastline.' Sunflower sea stars used to be everywhere — on sand, rocks, kelp beds, and seagrass beds. For Gehman, that's the point. She hopes the findings help people realize that even the most abundant species can disappear very quickly. This story originally appeared in Los Angeles Times.


Time Magazine
6 hours ago
- Time Magazine
'Flesh-Eating' Bacteria Cases Rising on Gulf Coast: What to Know
At least eight people along the Gulf Coast have died and 22 others have been infected in what local health officials are warning is a rise in cases involving 'flesh-eating' bacteria. The Louisiana Department of Health issued an alert last week saying that there had been 17 cases of Vibrio vulnificus in the state so far this year. All of those patients were hospitalized, and four died. 'This represents a higher number of Vibrio vulnificus cases and deaths than are typically reported,' the department said. 'During the same time period over the previous 10 years, an average of seven Vibrio vulnificus cases and one death were reported each year.' Meanwhile, health officials in Florida have reported 13 cases this year, as of July 24. Four of those cases have resulted in death. Public health experts have generally attributed the rise in cases to climate change. Here's what to know about the bacteria. What is Vibrio vulnificus? Vibrio vulnificus is a type of Vibrio bacteria, many species of which can cause an infection known as vibriosis. Vibrio vulnificus bacteria 'cause the most serious forms of vibriosis,' according to the Cleveland Clinic. Infections can lead to painful blisters, fever, internal bleeding, organ damage, sepsis, and even death, the clinic said. Vibrio vulnificus can also cause necrotizing fasciitis, which is 'a severe infection in which the flesh around an open wound dies,' according to the U.S. Centers for Disease Control and Prevention (CDC). While Vibrio vulnificus is often referred to as 'flesh-eating bacteria,' the CDC said that many public health experts don't consider it to be the most common cause of necrotizing fasciitis in the country. Read More: Be Careful Where You Swim This Summer How common are infections? Vibrio vulnificus infections are rare. According to the Cleveland Clinic, there are only about 100 to 200 confirmed cases in the country each year. Infections caused by other types of Vibrio bacteria are more common than Vibrio vulnificus. There are about 80,000 vibriosis cases across the country every year, according to the CDC, about 52,000 of which are caused by eating food contaminated with Vibrio bacteria. How is the bacteria transmitted, and how can you protect yourself? Vibrio bacteria typically live in salt water and brackish water, which is a combination of salt water and fresh water, according to the CDC. People can become infected with Vibrio vulnificus from eating raw shellfish, typically oysters, according to the Cleveland Clinic. The bacteria can also infect people who are exposed to seawater or brackish water, via a wound or break in their skin. Most cases occur during the summer, between May and October, when the water is typically warmer. The Cleveland Clinic advises people to reduce their risk of getting infected by avoiding eating raw or undercooked shellfish, washing their hands after preparing or touching raw shellfish, and avoiding contact with seawater and brackish water if they have a wound or new piercing or tattoo, among other measures. Both the Louisiana and Florida Departments of Health warned people with health conditions that put them at increased risk—such as chronic liver disease, kidney disease, or other conditions that compromise their immune systems—to take extra care around the coast. Those individuals 'should wear proper foot protection to prevent cuts and injury caused by rocks and shells on the beach,' the Florida health department advised.