NASA satellite sees sea ice crack apart in Canada
NASA satellites looked down on huge cracks forming in sea ice in Canada's far north.
The Amundsen Gulf is named after Roald Amundsen, a Norwegian explorer who, in the early 1900s, embarked on a voyage into the Northwest Passage, a winding narrow passage through the Canadian Arctic Archipelago. Amundsen was hoping to use the Northern Passage as a shortcut, reducing travel time, according to NASA's Earth Observatory.
After facing several hazards, his ship and crew successfully emerged from the passage, becoming the first people to successfully navigate the dangerous terrain. Amundsen's ship, called the Gjøa, was only crewed by six men, all of whom helped conduct meteorological observations while sailing.
The Amundsen Gulf lies in the Northwest Territories of Canada.
While Roald Amundsen and his crew paved the way for other ships to navigate the Northern Passage, the route still poses dangers for ships due to the shifting sea ice. Seasonal changes can cause sea ice to melt and break apart, drifting in the cold arctic waters. While this in itself may not be necessarily dangerous, if the sea ice accumulates enough, it can create "choke points" that block ships from sailing through.
In this image, taken by the MODIS (Moderate Resolution Imaging Spectroradiometer) on NASA's Terra satellite, much of the sea ice is still "fastened" to the coastline, but other chunks have migrated into the Beaufort Sea. This ice break up will continue for several months as warmer temperatures and wind help to crack apart the thick arctic ice. The cycle usually begins in March 2025, according to NASA's Earth Observatory
You can read more about sea ice levels in the arctic as satellites like Terra and other continue to observe Earth's many beautiful structures.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
4 hours ago
- Yahoo
Research project at Churchill facility raises alarm about potential impact of oil spill in Arctic waters
A natural remedy that has previously helped counter oil spills will be too slow to "do any useful work" if there's a spill in the Canadian Arctic, increasing chances of "catastrophic" harm, researchers say. Preliminary findings from the GenIce II research team, led by Eric Collins from the University of Manitoba in Winnipeg, suggest oil-degrading microbes respond very slowly to oil-contaminated Arctic waters. "We do see that it takes at least a few weeks or a month for the microbes to respond and actually start to break down the oil, and that's just too long in the case of a real oil spill," said Collins, who has a doctorate in biological oceanography and is a Canada Research Chair in Arctic Marine Microbial Ecosystem Services. In November, the GenIce II research team (GenIce is short for genomics and ice) began work at the $45-million observatory in Churchill, Man., to better understand and observe the potential impact of an oil spill in the Arctic marine environment. Collins said the 2010 Deepwater Horizon oil spill served as a "wake-up call" for researchers to study the impact of "natural microbial communities" in oil-contaminated water. It is believed that during the Deepwater Horizon oil spill, microbes cleaned up nearly 10 times more than humans did. The spill released more than half a billion litres of oil into the Gulf of Mexico over an 87-day period, killing thousands of marine species and contaminating the natural habitat. Collins's research team is focused on how microbes respond to oil in Arctic waters, as opposed to water in warmer regions like the Gulf of Mexico, where the Deepwater Horizon spill happened. With the shipping season in the Hudson Bay extending due to melting Arctic ice and an expected increase in shipping and marine traffic through the bay, experts say the chance of an oil spill is increasing. An oil spill near the coastline is particularly concerning to Collins because the current circulation in Hudson Bay could spread the contamination all along the coastline, endangering the ecosystem and, in turn, surrounding communities, many of which depend on the natural environment for sustenance. Collins' team is conducting research at the new Churchill Marine Observatory — without which Collins says the GenIce II project "wouldn't be possible." "There's no way we would get permission to put oil directly into the water in order to test the effects of an oil spill on the Arctic community, so the fact that we have these large tanks that we can pump water from Hudson Bay into and do the experiments in a controlled setting is really important," Collins said. The facility runs seawater through a pumphouse into two pools where the experiments occur. One pool remains uncontaminated, while oil is placed in the other pool; after the experiment is complete, the oil is removed and the water is cleaned using an on-site wastewater treatment facility, and then released back into the ocean after a third party tests its cleanliness. Feiyue Wang, who heads the Churchill Marine Observatory, says the facility's ability to perform controlled experiments in natural Arctic waters is unique. Since plans for the facility were announced in 2015, it has captured the attention of international researchers, particularly from Arctic countries, Wang said — interest he expects will lead to more collaborative research with international partners. "We're [other Arctic countries] facing similar types of challenges and opportunities," said Wang, who has a doctorate in environmental geochemistry and is a Canada Research Chair in Arctic Environmental Chemistry. "What's happening in Hudson Bay is really just a forecast of what's happening elsewhere in the Arctic." According to a government study in 2022, over the past 30 to 40 years, it has taken three to four days longer each decade for ice to cover Hudson Bay fully. Over the course of each decade, the ice cover has started to break about five days earlier in spring. The ice cover in that inland sea has required more time to develop into a fully established ice cover (an increase of three to four days per decade). Ice break-up initiation has begun earlier in the Spring/Summer, i.e. that shift is estimated at about five days per decade. Wang says Hudson Bay is on track to be "essentially ice-free" by the end of the century. "As a country, as scientists, we want to get ahead of the potential issues," Wang said. "The observatory is really geared toward studying opportunities and challenges associated with socioeconomic development in a changing environment as the Bay becomes more open." The observatory became operational nearly 10 years after plans were announced and roughly six years after it was expected to be completed. Complications with ownership of the Port of Churchill, a major flood in 2017 that impacted the railway to Churchill, COVID-19 and the passing of David Barber, a key figure in the establishment of the facility, all led to delays in construction. The original location of the observatory changed after the Port of Churchill changed ownership. With help from the federal and provincial governments, the facility was built at a new location, which did garner some criticism from the community, because it was built on traditionally significant land. "We tried everything we could, including the input from the community, to try and minimize the disturbance to the landscape," Wang said. "So that is an ongoing dialogue, an ongoing collaboration that we'll be dealing with and working with the community to make sure that their concerns are addressed." Efforts are also being made to incorporate traditional Indigenous knowledge into the research being done at the marine observatory, Wang said. "They're an integral part of what we do," Wang said. "They know the lands, they know the ice, they know the marine ecosystem, and so we always work together." The GenIce II team also worked closely with the community in Chesterfield Inlet, Nunavut, to help monitor the environment, watch for oil spills and research the responsiveness of Arctic microbes to oil. "Inuit people in Chesterfield Inlet are particularly worried about oil spills coming from ships that are going there to the mines in Baker Lake, where they're extracting gold," Collins said. "There's a lot of ship traffic up there, and if there was an accident, then that could release a lot of oil, and they depend on the animals that live in the water for their subsistence." The GenIce II research team is planning to build on their oil spill research with their next research trip to the marine observatory for this coming winter.


Bloomberg
4 hours ago
- Bloomberg
Another Moon Landing Will Take More Than Rocket Science
You don't hear the phrase, 'If we can put a man on the moon, why can't we…' much anymore. Perhaps that's because it's not clear that 21st-century America can put a person on the moon again. The Wall Street Journal resurrected the expression in 2018, in a story about the cost overruns and bureaucratic snags hampering NASA's Artemis program. The headline read, 'If We Can Put a Man on the Moon, Why Can't We Put a Man on the Moon?'


USA Today
4 hours ago
- USA Today
The Parker Solar probe captures closest-ever images of the Sun. See the results.
Newly released imagery from NASA shows the Sun's corona in stunning detail after the Parker Solar probe performed its closest-ever flyby. On its closest-ever flyby to the Sun, NASA's Parker Solar probe captured newly released images of solar winds purging out from the Sun's outermost atmosphere, the Corona. Scientists are learning more about the Sun's impact throughout the solar system, including events that may have an impact on Earth. 'Parker Solar Probe has once again transported us into the dynamic atmosphere of our closest star,' said Nicky Fox, associate administrator, Science Mission Directorate at NASA Headquarters in Washington in a recent release. 'We are witnessing where space weather threats to Earth begin, with our eyes, not just with models. This new data will help us vastly improve our space weather predictions to ensure the safety of our astronauts and the protection of our technology here on Earth and throughout the solar system.' Sun's solar wind captured in detail For the first time, the probe recorded in high resolution the collision of numerous coronal mass ejections (or CMEs) which are massive explosions of charged particles that play a major role in space weather. 'In these images, we're seeing the CMEs basically piling up on top of one another,' said Angelos Vourlidas, the WISPR instrument scientist at the Johns Hopkins Applied Physics Laboratory, which designed, built, and operates the spacecraft in Laurel, Maryland. 'We're using this to figure out how the CMEs merge together, which can be important for space weather.' Unable to view our graphics? Click here to see them. The Parker Solar Probe discovered that while the solar wind is a steady breeze near Earth, it is anything but at the Sun. The spacecraft experienced switchbacks, or zigzag magnetic fields, when it got within 14.7 million miles of the Sun. Scientists found that these switchbacks, which occurred in clusters, were more frequent than anticipated using data from the Parker Solar Probe. How close was the probe to the sun? On December 24, 2024, the Parker Solar Probe began its closest approach to the Sun, traveling only 3.8 million miles from the solar surface. Putting that into perspective, if the Earth and Sun were only 1 foot apart, the Parker probe would be about a 1/2 inch from the Sun's surface, according to NASA. In the spacecraft's closest orbit to the Sun, it used a variety of scientific instruments, including the Wide-Field Imager for Solar Probe (or WISPR) to gather data as it passed through the Sun's outer atmosphere, or corona. The solar wind, a continuous flow of electrically charged particles from the Sun that rages throughout the solar system and the corona are both visible in the new WISPR photos. Knowing the origins of the solar wind near the Sun is the first step towards comprehending its effects, according to NASA. More: James Webb Space Telescope marks 3rd anniversary: What to know about observatory More: NASA astronaut captures rare phenomenon from 250 miles above Earth: See photo of 'sprite' How the Sun's solar winds impact Earth's atmosphere The Earth's magnetic field is our invisible protector. The field creates a barrier that shields us from the powerful solar winds. The magnetic field can occasionally become disrupted by stronger solar winds. According to NASA, in some cases, it can also trigger space weather events that interfere with everything from land-based power networks to ship communications on our oceans to our satellites in orbit. Stunning auroras are also created when the particle stream interacts with gases in the planet's magnetic field. Parker Solar Probe is expected to continue gathering more data in its present orbit as it makes future passes through the corona to assist scientists to discover the origins of the sluggish solar wind. The next pass is scheduled for September 15, 2025. SOURCE NASA, Goddard Space Flight Center, Johns Hopkins APL, Naval Research Laboratory and USA TODAY research