logo
Scientists say they have identified Earth's oldest rocks. It could reveal an unknown chapter in our planet's history

Scientists say they have identified Earth's oldest rocks. It could reveal an unknown chapter in our planet's history

CNNa day ago

A rocky outcrop in a remote corner of northern Quebec appears serene in its eerie isolation on the eastern shore of Canada's Hudson Bay.
But over the past two decades, this exposed remnant of ancient ocean floor, known as the Nuvvuagittuq Greenstone Belt, has been a heated scientific battleground in the quest to identify Earth's oldest rock.
New research suggests that the geological site harbors the oldest known surviving fragments of Earth's crust, dating back to 4.16 billion years ago. It's the only rock determined to be from the first of four geological eons in our planet's history: the Hadean, which began 4.6 billion years ago when the world was hot, turbulent and hell-like.
'Rocks are books for geologists … and right now we're missing the book (on the Hadean). The Nuvvuagittuq Greenstone Belt would be at least one page of that book, so that's why it's so important,' said geologist Jonathan O'Neil, author of the research published Thursday in the journal Science.
The Nuvvuagittuq Greenstone Belt has been dated several times by different research groups, with widely divergent results. Most agree the rock is at least 3.75 billion years old — but that wouldn't make it Earth's oldest.
The Acasta Gneiss Complex, a group of rocks exposed along a riverbank nearly 200 miles (300 kilometers) north of Yellowknife, in northwestern Canada, is more widely agreed to be the planet's oldest geological formation. These rocks are unambiguously dated at 4.03 billion years old, marking the boundary between the Hadean Eon and the next chapter in Earth's history: the Archean. (There are older rocks on the planet — but not from the planet — that aren't part of this debate: Some meteorites are 4.5 billion years old.)
A controversial 2008 paper coauthored by O' Neil, who has been studying the site since he was a doctoral student, argued Nuvvuagittuq Greenstone Belt was 4.3 billion years old; however, other geologists took issue with the limits of the dating techniques and how the data was interpreted. With this latest paper, O'Neil, now an associate professor at the University of Ottawa in the department of Earth and environmental sciences, aims to prove his critics wrong.
Dating rocks involves using radiometric techniques that harness the natural and spontaneous radioactive decay of certain elements in the rock, which acts as a type of clock.
O'Neil uses an hourglass analogy: Imagine counting grains of sand at the top (radioactive elements) and bottom (elements produced from radioactive decay). Knowing the speed of the flowing grains (which represents the decay rate), allows scientists to date rocks. Some of these radiometric clocks are robust and can withstand the high temperatures and pressures Earth's crust has endured over the eons, while others are more affected by these processes.
The gold standard and easiest way to date very old rock formations is with a very tough mineral known as a zircon. These tiny crystals incorporate a bit of uranium into their structure, and researchers can pinpoint their age by measuring the radioactive decay of uranium atoms, which turn into lead at a known rate.
However, the Nuvvuagittuq Greenstone Belt — which was mapped after a geological survey in the 1960s but first attracted scientific attention in the early 2000s — contains very few rocks bearing zircons as they rarely occur in specimens with lower levels of silicon, including ones that were once ancient ocean crust.
'We tried to find zircons. They're just not there, or formed at a later time during the metamorphism or cooking of the rocks,' O'Neil said. Metamorphic rock is that which has been transformed by heat, pressure or other natural forces.
Instead, for the new study, O'Neil turned to the rare earth element samarium, which decays into the element neodymium. It's a technique that has been used to date meteorites because the elements were only active more than 4 billion years ago.
'The controversy about the age is that some people believe the clock we use is not good or it was affected (by other geological processes),' he said.
'It's a debate about what exactly we are measuring in time because we can't use zircon, and some people in my field would only be convinced by zircons.'
O'Neil said the technique was valuable in this case because it's possible to measure the decay of two variants, or isotopes, of samarium into two distinct isotopes of neodymium — essentially getting two clocks for the price of one. The latest paper focused on a specific type of metamorphic ancient rock — metagabbroic intrusions — sampled from within the belt, and the two data points converged on the same age: 4.16 billion years old.
This age, the study concluded, meant that 'at least a small remnant' of Hadean crust was preserved in the Nuvvuagittuq Greenstone Belt, which would provide invaluable insights into Earth's origins and how life formed.
Nearby rocks from the same location may preserve various signatures of life from the eon, as well as microfossils, tiny filaments and tubes formed by bacteria, noted Dominic Papineau, a senior research scientist at the Institute of Deep-sea Science and Engineering at the Chinese Academy of Sciences. He wasn't involved in the latest research but has studied fossils from the site.
'The rocks that were newly dated come from the mantle, which is not thought to harbour life or be habitable for life,' said Papineau, who is also an honorary professor of Precambrian biogeochemistry and exobiology at the University College London.
'However, the adjacent sedimentary rocks are now confirmed to be at least 4,160 million years old, which is 'only' about 400 million years after the accretion of our planet and of the Solar System,' he added in an email.
'Evidence of very early life in these sedimentary rocks indicate that the origin of life can take place very quickly (relatively speaking), which increases the probability that life is common and widespread in the universe.'
It's not yet clear whether Nuvvuagittuq outcrops will become widely accepted as Earth's oldest rocks, according to other scientists who were not involved with the research.
Bernard Bourdon, a geochemist at the Lyon Geology Laboratory in France who had previously taken issue with the earliest dates for Nuvvuagittuq Greenstone Belt published by O'Neil, said he was 'more convinced' by the latest work, and it was 'well improved' on previous studies.
'What is better, compared to the 2008 paper, is the fact that the two techniques … they give the same age. That's good. That's where we criticized the first results,' Bourdon, who is also research director at French scientific research body CNRS, said.
'In the end, I think there's more credibility to the age,' he said, adding that he had some 'small doubts' and would like to investigate the data more in depth.
The age of the rocks 'remains an unsolved mystery,' according to Hugo Olierook, a geoscientist and senior research fellow at Curtin University in Australia.
'In the absence of 'easy' minerals to date, they have turned to whole-rock, which is fraught with problems as whole-rock samples have multiple minerals,' Olierook said via email.
'It only takes one of these minerals to have been altered and their age 'reset' to a younger age for the whole house of cards to fall over,' he added, noting that very high and low temperatures can naturally alter the crystallization age of minerals in rock.
Very little is definitive when dealing with rocks and minerals that have complex geological histories spanning more than 4 billion years, according to Jesse Reimink, the Rudy L. Slingerland Early Career Professor of Geoscience at Penn State University.
'Even if these rocks are 'only' 3.8 billion years old, it is quite amazing that they are preserved. This current work presents more compelling data, supporting an age of 4.15 billion years ago, than that which was previously produced, which was already compelling,' Reimink said.
'The timescales are so long, and the history of these rocks and minerals is so tortured, that gleaning any primary information from them at all is pretty amazing.'

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Time Is Three-Dimensional and Space Is Just a Side Effect, Scientist Says
Time Is Three-Dimensional and Space Is Just a Side Effect, Scientist Says

Yahoo

time5 hours ago

  • Yahoo

Time Is Three-Dimensional and Space Is Just a Side Effect, Scientist Says

A fringe new theory suggests that time is the fundamental structure of the physical universe, and space is merely a byproduct. According to Gunther Kletetschka, a geologist — not a physicist, you'll note, but more on that later — from the University of Alaska Fairbanks, time is three-dimensional and the dimensions of space are an emergent property of it, a press release from the university explains. "These three time dimensions are the primary fabric of everything, like the canvas of a painting," Kletetschka said in the blurb. "Space still exists with its three dimensions, but it's more like the paint on the canvas rather than the canvas itself." Three-dimensional time is a theory that has been proposed before, though generally in pretty inaccessible terms. Similarly to the explanation for three dimensions of space — length, width, and depth — 3D time theory claims that time can move forward in the linear progression we know, sideways between parallel possible timelines, and along each one of those as it unfolds. Yes, it's a pretty mind-blowing concept — but scientists have long theorized that time, as the fourth dimension in Albert Einstein's theory of relativity, is less intuitive than it seems in everyday reality. While other 3D time theories rely on traditional physics, Kletetschka suggests that his may help explain the many outstanding questions accepted physics still harbors. In a somewhat grandiose manner, the geologist even claims that his 3D time proposal could operate as a grand unifying theory or "theory of everything," the Holy Grail of quantum mechanics that would explain how the universe works on a sweeping level. "The path to unification might require fundamentally reconsidering the nature of physical reality itself," the scientist said. "This theory demonstrates how viewing time as three-dimensional can naturally resolve multiple physics puzzles through a single coherent mathematical framework." Obviously, there are an astonishing number of caveats to consider here. For one, Kletetschka is not a theoretical physicist — he's a geologist, and according to his university bio he also has some experience in astronomy. Extraordinary claims all call for extraordinary evidence. And the claims here are already stirring controversy: as an editor's note added to the end of the press release cautions, the scientist's theory was published in the journal Reports in Advances of Physical Sciences, a "legitimate step," but one that isn't remotely sufficient to take it out of the realm of the fringe. That journal, the note adds, is "relatively low-impact and niche, and its peer review does not match the rigorous scrutiny applied by top-tier journals." "The theory is still in the early stages of scrutiny," the note concluded, "and has not been published in leading physics journals or independently verified through experiments or peer-reviewed replication." Still, it's a fascinating concept to consider — especially because we still don't know exactly how time works, anyway. More on fringe theories: Physicists Say We Were Completely Wrong About How Gravity Works

Pitcher this: MUN herbarium home to thousands of N.L. botanicals
Pitcher this: MUN herbarium home to thousands of N.L. botanicals

Yahoo

time7 hours ago

  • Yahoo

Pitcher this: MUN herbarium home to thousands of N.L. botanicals

In a room full of tall metal cabinets, Julissa Roncal carefully flicks through stacks of manila folders. They're filled with pages of expertly pressed and dried plant specimens. "See the little berries there? How do you dry a fleshy fruit and put it on a paper, completely dry?" she said, pulling out a page with a flat, dry branch with berries on it. They're perfectly preserved and dated 1966. "It does take a lot of time, effort and art to put those fleshy fruits on a dried specimen that will last for decades." Roncal is the curator of the Memorial University Agnes Marion Ayre Herbarium. The collection has about 100,000 specimens tucked in a small office on Mount Scio Road. "They are basically cataloged or distributed following a particular order that represents the classification," she explained. "Each specimen is labelled with the year it was collected, the person who collected it, and where it was found." She said about 80 to 90 per cent of the specimens are from Newfoundland and Labrador, and the rest are from other parts of the world. The collection, Roncal said, is not only important for research and history, but because it belongs to the people of the province. "This is a specimen of the Newfoundland provincial flower," she said, pulling out a page with a dried pitcher plant adhered to it, titled Carbonear, 1945. For decades, researchers and botanists have dried, pressed, and preserved specimens from three main categories: algae, mosses and vascular plants. The collection is used to train biology students at MUN, who learn about databases, manipulating large data sets, and get experience in botany and biology in systematics, taxonomy and species distribution. "We can extract DNA, for example, from these specimens for genomics research," Roncal said. And depending on the research, the collection can also aid in climatological research. "We can also track whether these species have changed their flowering times or their physiologies throughout time," she said. "For example, we can detect whether a particular species is flowering sooner or later and correlate it with climate change, so that information can be observed or rescued from the information that is hosted or housed here." Roncal said there are about sixteen thousand specimens digitized and accessible to the public. Work at the herbarium started years before Roncal's tenure as curator. She describes the herbarium's namesake — Agnes Marion Ayre — as an influential figure. "She was a suffragist, she fought for women's rights, for voting. So she's definitely an inspiration beyond botany for all of us," she said. Ayre was an amateur botanist, and collected and preserved some of the specimens in the collection. Roncal said those contributions were the starting point. "So it is the result of decades of botanical exploration and accumulation of these specimens," she said. But Ayre didn't just catalogue plant species she found, she also painted them with watercolours while in the field. There are about two thousand of Ayre's paintings between the Centre for Newfoundland Studies and the herbarium. It's a process that Roncal said added more detail than a typical press would. "Painting allows you to devote time to deep, thorough observation of the plant that you have in front of you," Roncal said, looking at a painting from the 1920s. "So that's why the combination of both is ideal to really get to know what species and identify with confidence what you're looking at," she said. "And putting a name to what you're looking at." Roncal said her team is working on digitizing the rest of the collection to make it more accessible. Download our to sign up for push alerts for CBC Newfoundland and Labrador. Sign up for our . Click .

Rocks in Canada's Quebec province found to be the oldest on Earth
Rocks in Canada's Quebec province found to be the oldest on Earth

Yahoo

time18 hours ago

  • Yahoo

Rocks in Canada's Quebec province found to be the oldest on Earth

By Will Dunham (Reuters) -Along the eastern shore of Hudson Bay in Canada's northeastern province of Quebec, near the Inuit municipality of Inukjuak, resides a belt of volcanic rock that displays a blend of dark and light green colors, with flecks of pink and black. New testing shows that these are Earth's oldest-known rocks. Two different testing methods found that rocks from an area called the Nuvvuagittuq Greenstone Belt in northern Quebec date to 4.16 billion years ago, a time known as the Hadean eon. The eon is named after the ancient Greek god of the underworld, Hades, owing to the hellish landscape thought to have existed then on Earth. The research indicates that the Nuvvuagittuq Greenstone Belt harbors surviving fragments of Earth's oldest crust, the planet's outermost solid shell. The Nuvvuagittuq rocks are mainly metamorphosed volcanic rocks of basaltic composition. Metamorphosed rock is a kind that has been changed by heat and pressure over time. Basalt is a common type of volcanic rock. The rocks tested in the new study were called intrusions. That means they formed when magma - molten rock - penetrated existing rock layers and then cooled and solidified underground. The researchers applied two dating methods based on an analysis of the radioactive decay of the elements samarium and neodymium contained in them. Both produced the same conclusion - that the rocks were 4.16 billion years old. Future chemical analyses of these rocks could provide insight into Earth's conditions during the Hadean, a time shrouded in mystery because of the paucity of physical remains. "These rocks and the Nuvvuagittuq belt being the only rock record from the Hadean, they offer a unique window into our planet's earliest time to better understand how the first crust formed on Earth and what were the geodynamic processes involved," said University of Ottawa geology professor Jonathan O'Neil, who led the study published on Thursday in the journal Science. The rocks may have formed when rain fell on molten rock, cooling and solidifying it. That rain would have been composed of water evaporated from Earth's primordial seas. "Since some of these rocks were also formed from precipitation from the ancient seawater, they can shed light on the first oceans' composition, temperatures and help establish the environment where life could have begun on Earth," O'Neil said. Until now, the oldest-known rocks were ones dating to about 4.03 billion years ago from Canada's Northwest Territories, O'Neil said. While the Nuvvuagittuq samples are now the oldest-known rocks, tiny crystals of the mineral zircon from western Australia have been dated to 4.4 billion years old. The Hadean ran from Earth's formation roughly 4.5 billion years ago until 4.03 billion years ago. Early during this eon, a huge collision occurred that is believed to have resulted in the formation of the moon. But by the time the Nuvvuagittuq rocks formed, Earth had begun to become a more recognizable place. "The Earth was certainly not a big ball of molten lava during the entire Hadean eon, as its name would suggest. By nearly 4.4 billion years ago, a rocky crust already existed on Earth, likely mostly basaltic and covered with shallow and warmer oceans. An atmosphere was present, but different than the present-day atmosphere," O'Neil said. There had been some controversy over the age of Nuvvuagittuq rocks. As reported in a study published in 2008, previous tests on samples from the volcanic rock layers that contained the intrusions yielded conflicting dates - one giving an age of 4.3 billion years and another giving a younger age of 3.3 to 3.8 billion years. O'Neil said the discrepancy may have been because the method that produced the conclusion of a younger age was sensitive to thermal events that have occurred since the rock formed, skewing the finding. The new study, with two testing methods producing harmonious conclusions on the age of the intrusion rocks, provides a minimum age for the volcanic rocks that contain these intrusions, O'Neil added. "The intrusion would be 4.16 billion years old, and because the volcanic rocks must be older, their best age would be 4.3 billion years old, as supported by the 2008 study," O'Neil said.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store