Watch tile-shedding private Chinese rocket launch 6 satellites to orbit (video)
The Chinese company LandSpace launched its methane-powered Zhugque-2E rocket on Saturday (May 17), carrying a batch of six satellites to orbit.
Zhugque-2E lifted off Saturday at 12:12 a.m. EDT (0412 GMT; 12:12 p.m. in Beijing) from Site 96 at the Jiuquan Satellite Launch Center's Complex-43, in northwestern China's Gobi Desert. The mission, carried out by LandSpace for commercial satellite maker Changsha Tianyi Space Science and Technology Research Institute, known as Spacety for short, carried six Tianyi satellites into low Earth orbit (LEO).
This was the second launch of LandSpace's Zhugque-2E rocket — the "E" stands for "enhanced", indicating the rocket's extended 13.8-foot (4.2-meter) payload fairing. In total, Zhugque-2E stands 155 feet (47 m) tall. Its first stage is powered by four Tiānquè-12A (TQ-12A) methalox-powered engines, with a vacuum-optimized TQ-15A engine powering the upper stage.
The six satellites, numbered Tianyi 29, 34, 35, 42, 45 and 46, will join a constellation of diverse Earth-observation spacecraft operated by Spacety in LEO.
The batch includes two optical remote sensing satellites, Tianyi 29 and 35; three space science experiment satellites, Tianyi 24, 45 and 46; and one remote-sensing synthetic aperture radar satellite, Tianyi 42.
Related stories:
— US and China need a space hotline for orbital emergencies, experts say
— Watch China's private Ceres-1 rocket launch 4 satellites from a ship at sea (video)
— Watch China launch Smart Dragon-3 rocket from the sea (video)
This was the 27th orbital launch from China so far this year, with more than half a dozen lifting off in the month of May alone. Just two days following the LandSpace launch, another Chinese company, Galactic Energy, launched its solid-propellant Ceres-1 rocket from a ship at sea.

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
13 hours ago
- Yahoo
Astronomers capture incredible 1st image of a dead star that exploded twice. How did it happen?
When you buy through links on our articles, Future and its syndication partners may earn a commission. You may only live once, but some stars die twice. Astronomers have now discovered the first visual evidence of such a stellar event, a dead star that underwent a so-called "double-detonation." This could indicate that some stars could go supernova without reaching the so-called Chandrasekhar limit, the minimum mass that a star needs to go supernova. Using the Very Large Telescope (VLT) and its Multi Unit Spectroscopic Explorer (MUSE) instrument, the team zoomed in on the centuries-old remains of supernova SNR 0509-67.5 located 60,000 light-years away in the constellation Dorado. This investigation revealed structures within this explosive wreckage that indicate its progenitor star exploded not once but twice. Said star was a white dwarf, the type of stellar remnant that forms when a star with a mass similar to that of the sun runs out of fuel for nuclear fusion. The types of supernova explosions that white dwarfs undergo, Type Ia supernovas, are important to astronomers because they can be used to measure cosmic distances because their light output is so uniform. Thus, astronomers often refer to them as "standard candles."The first visual evidence of a double detonation white dwarf reveals hidden depths to these important stellar events, scientists say. "The explosions of white dwarfs play a crucial role in astronomy," team leader and University of New South Wales researcher Priyam Das said in a statement. "Yet, despite their importance, the long-standing puzzle of the exact mechanism triggering their explosion remains unsolved." Scientists agree that the genesis of Type Ia supernovas is binary systems of two stars in which one becomes a white dwarf. If this dead star orbits close enough to its living stellar companion, or if that companion swells up, then the white dwarf becomes a stellar vampire, greedily stripping material from its companion or "donor" star. This continues until the piling up stolen material has added so much mass to the white dwarf that the stellar remnant crosses the so-called Chandrasekhar limit, which is about 1.4 times the mass of the sun. Hence, this cosmic vampire white dwarf explodes in a Type Ia supernova. It is believed that in most cases, the eruption completely destroys the white dwarf. But for some time, astronomers have suspected there may be more to the story. Maybe white dwarfs can experience a second explosion. This research confirms that at least some white dwarfs experience double-detonations. The question is: why? Theory behind double-detonations suggests that in these cases, as white dwarfs are stripping material from a donor star, they wrap themselves in a blanket of stolen helium. This envelope becomes unstable and eventually ignites, triggering the first detonation. The initial explosion generates a shockwave that ripples inwards, eventually striking the core of the white dwarf, triggering a second detonation, the actual supernova. The significance of this to our understanding of Type Ia white dwarf supernovas is that it can occur well before a dead star swells beyond the Chandrasekhar limit. Recently, scientists determined that this double-detonation process would imprint a distinctive "fingerprint" with supernova wreckage. This should be present long after the supernova ripped its progenitor star apart. That fingerprint is now visually confirmed as being present in the wreckage of SNR 0509-67.5, supernova wreckage in the Large Magellanic Cloud first detected in 2004 and believed to be around 400 years old as we see it. Related Stories: — 'Vampire stars' explode after eating too much — AI could help reveal why — Supernova explosion's weird leftovers may contain a super-dense star — Peer inside remnants of an 800-year-old supernova and see a 'zombie' star Beyond being an important discovery for our scientific understanding of these events and solving a lingering mystery about the evolution of white dwarfs, the observation of SNR 0509-67.5 has provided astronomy lovers with some stunning eye-candy. "This tangible evidence of a double-detonation not only contributes towards solving a long-standing mystery, but also offers a visual spectacle," Das concluded. The team's research was published on Wednesday (July 2) in the journal Nature Astronomy
Yahoo
13 hours ago
- Yahoo
125,000-year-old 'fat factory' run by Neanderthals discovered in Germany
When you buy through links on our articles, Future and its syndication partners may earn a commission. Neanderthals were running a potentially lifesaving "fat factory" around 125,000 years ago in what is now Germany, a new study finds. The research, published Wednesday (July 2) in the journal Science, reveals that these archaic human relatives had a process for extracting grease from animal bones — and it may have saved them from a lethal condition. The condition, known as protein poisoning or rabbit starvation, happens when humans eat too much protein and don't get enough fat or carbohydrates. Neanderthals would have likely been at high risk of protein poisoning, as they largely ate meat. The "fat factory" discovery suggests that hominins, or humans and our close relatives, were practicing resource intensification — getting more utility out of the materials they had available — much earlier than previously thought. Before this analysis, the earliest evidence for resource intensification dated to 28,000 years ago, long after the Neanderthals' extinction, according to the study. Scientists found the Paleolithic factory after uncovering the fragmented remains of 172 large animals, including horses, deer and cattle, as well as Neanderthal-made anvils and hammerstones. After analyzing the bones, the team found that Neanderthals had first smashed the bones to get to the marrow — a soft, edible tissue inside of some bones — before boiling them to extract the fat. It appears that Neanderthals ate both the marrow and the fat, which would have maximized the amount of food and nutrients they got from an animal carcass. "It's surprisingly creative and innovative behavior from Neanderthals," Osbjorn Pearson, an archaeologist at The University of New Mexico who was not involved in the study, told Live Science. Related: 10 fascinating discoveries about Neanderthals in 2024, from 'Thorin' the last Neanderthal to an ancient glue factory Neanderthals, the closest extinct relative of modern humans, emerged around 400,000 years ago and went extinct around 34,000 years ago. Remains of the archaic humans were first discovered in the 19th century, and much of the archaeological evidence revealed since then suggests that Neanderthals were fairly sophisticated. They made tools, glue factories and possibly even art. While it was known that Neanderthals largely ate meat, little was known about how Neanderthals prepared animal carcasses. "We know a lot about Neanderthal hunting tactics, habits and consumption of meat and bone marrow … but to much lesser degree about all the processes after hunting and butchering," study first author Lutz Kindler, an archaeologist at the Monrepos Archaeological Research Center and Museum for Human Behavioral Evolution in Germany, told Live Science in an email. Archaeologists found 2,000 bone fragments at Neumark-Nord, an archaeological site in central Germany, that had been crushed to facilitate the grease extraction. "Fragmentation of the bones of large mammals into such a vast amount of small fragments is labour-intensive and time-consuming," so it's clear they served a purpose, study co-author Wil Roebroeks, a professor emeritus of paleolithic archaeology at Leiden University in the Netherlands, told Live Science in an email. In addition to bearing signs of being boiled, the bones are mostly broken near areas that contain the most fat, which supports the idea that the grease was rendered for consumption. Neanderthals might have eaten the fat out of necessity, Pearson said. They sometimes experienced periods of starvation and may have been desperate for sources of calories. "And it turns out that fat is just packed with calories," he said — fat supplies more than twice the calories per gram as carbohydrates and protein do. The bones also suggest that these archaic humans may have used some form of food storage, Roebroeks said. Neanderthals may have been "more similar to historically documented foragers" than previous research had suggested, he added. RELATED STORIES —130,000-year-old Neanderthal-carved bear bone is symbolic art, study argues —50,000-year-old Neanderthal bones harbor oldest-known human viruses —Neanderthal 'population bottleneck' around 110,000 years ago may have contributed to their extinction Kindler noted the overlaps between the revealed Neanderthal practice and modern human behavior. "The archaeological science of studying hominids is about finding the similarities between us today and them in the past," he said. Understanding what Neanderthals ate and how they acquired it may improve our understanding of human adaptations, Roebroeks said. The extra calories provided by bone-derived grease has been vital to human evolution, as more robust diets can lengthen lifespan and lead to increased reproduction.
Yahoo
13 hours ago
- Yahoo
A newly forming ocean may split Africa apart, scientists say
When you buy through links on our articles, Future and its syndication partners may earn a commission. A plume of molten rock deep beneath eastern Africa is pulsing upward in rhythmic surges, slowly splitting the continent apart and potentially marking the birth of a new ocean. At least, that's what a team of researchers led by Emma Watts of the Swansea University in the U.K. recently discovered. More specifically, the scientists' new study found that the Afar region of Ethiopia is underlain by a plume of hot mantle that rises and falls in a repeated pattern, almost like "a beating heart." These pulses, the team says, are closely tied to overlying tectonic plates and play a key role in the slow rifting of the African continent. "We found that the mantle beneath Afar is not uniform or stationary — it pulses, and these pulses carry distinct chemical signatures," Watts said in a statement. "That's important for how we think about the interaction between Earth's interior and its surface." The Afar region, which covers the northeastern region of Ethiopia, is one of the few places on Earth where three tectonic rift systems meet — the Red Sea Rift, the Gulf of Aden Rift and the Main Ethiopian Rift. As the tectonic plates in this so-called "triple junction" are pulled apart over millions of years, the crust stretches, thins, and eventually breaks, signaling an early step in the formation of a new ocean basin. Geologists have long suspected that a plume of hot mantle lies beneath this region and helps drive the rifting process — but, until now, little was known about how that plume behaves. To study what lies beneath, researchers collected over 100 volcanic rock samples from across Afar and the Main Ethiopian Rift. They combined this fieldwork with existing geophysical data and advanced statistical modeling to better understand the structure and composition of the crust and underlying mantle. Their analysis revealed a single, asymmetric plume beneath the region, marked by repeating chemical patterns or "geological barcodes," according to the new study." The chemical striping suggests the plume is pulsing," study co-author Tom Gernon of the University of Southampton said in the statement. "In places where the plates are thinner or pulling apart faster, like the Red Sea Rift, those pulses move more efficiently — like blood through a narrow artery." "We found that the evolution of deep mantle upwellings is intimately tied to the motion of the plates above," study co-author Derek Keir of the University of Southampton added in the same statement. RELATED STORIES — Do other planets have plate tectonics? — How satellites have revolutionized the study of volcanoes — Meteorites and volcanoes may have helped jump-start life on Earth "This has profound implications for how we interpret surface volcanism, earthquake activity, and the process of continental breakup." The team's study was published on June 25 in the journal Nature Geoscience.