logo
Astronomers thought a mysterious radio burst came from deep space. It was actually a dead NASA satellite

Astronomers thought a mysterious radio burst came from deep space. It was actually a dead NASA satellite

Yahoo4 days ago

When you buy through links on our articles, Future and its syndication partners may earn a commission.
A powerful and mysterious blast of radio waves that astronomers believed was a fast radio burst (FRB) from far beyond the limits of the Milky Way has turned out to be an emission from a long-dead NASA satellite called Relay 2.
The now-discounted FRB or "pseudo-FRB" was initially detected by the Australian Square Kilometer Array Pathfinder (ASKAP) in June 2024 as this radio telescope scanned the sky over the southern hemisphere. It was remarkable because this burst of radio waves lasted less than 30 nanoseconds, much shorter than most FRBs, and yet it was strong enough to drown out all other signals from the sky.
"This was a chance discovery made when looking for FRBs, which originate in distant galaxies," team member and Swinburne University of Technology astrophysicist Adam Deller told Space.com. "Funnily enough, despite them being known for almost 20 years, we still don't actually know what generates FRBs, but most of the plausible theories involve a 'magnetar', which is a highly magnetized neutron star."
The Relay 2 satellite was launched in 1964 as part of NASA's Relay program. Sitting in a medium Earth orbit, the spacecraft operated until 1965, but by 1967, its systems had completely failed.
"It's part of space history, being one of the first ever communications satellites. There won't be many older satellites still up there," team member Clancy W. James from Curtin University's Institute of Radio Astronomy told Space.com. "But we're also sure that this was not a transmission by the satellite. None of its systems would have been capable of producing this nanosecond signal."James explained that at the time of the event, Relay 2 was just around 2,800 miles (4,500 kilometers) from Earth. While this might seem like a vast distance, consider that FRBs are thought to originate from cosmic sources as distant as 9.1 billion light-years away. In fact, the closest FRB source, and the only one ever seen within our galaxy, is still located an estimated 30,000 light-years away.
"So, although it appeared extremely bright to our telescope, this was just because it was much closer than the astronomical signals we were looking for," James continued. "It was difficult to get an image of it - it came out all blurry. This meant that it was close to the telescope. So, no astronomical object. Darn."
Since the discovery of the first FRB in 2007, astronomers have discovered over 1,000 FRBs, yet they remain one of the most fascinating and curious signals in the cosmos. So, finding out an exceptional example of such an FRB is actually a "pseudo-FRB" caused by a defunct piece of NASA equipment may initially be a little disappointing.
Surprisingly, team member and University of Edinburgh astronomer Marcin Glowacki wasn't disappointed at all that this signal turned out to be a signal from a man-made satellite.
"It was like an interesting puzzle for us to be able to localize this result from such a relatively close object to what we are used to! It certainly took some time and effort, as we had to adjust how we measured the signal with ASKAP to account for it being so close. It's like how phone cameras can struggle to focus on something very close to them," Glowacki told Space.com. "While we are mostly interested in astrophysical systems, this discovery is important for monitoring satellites in the future with ASKAP and other radio telescopes."
Glowacki further explained how a man-made object so close to Earth could have been mistaken for a cosmic blast of radio waves in the first place."It was a very bright radio signal that we saw once. Most FRBs have been found only once thus far, and are also exceedingly bright compared to other radio transients, such as from pulsars," he told Space.com. "However, this is on a shorter timescale than any known FRB. Signals from FRBs typically last from microseconds to several millisecond-timescales, rather than only a few 10s of nanoseconds.
"It was indeed good luck that ASKAP happened to be looking at the same part of the sky that the Relay 2 satellite was in when it gave off that signal - that allowed us to investigate further and determine the origin of the signal."
Thus, any initial disappointment can be offset a little by the fact that this observation was an amazing chance discovery. Additionally, this opens up an entirely new mystery; the team still can't quite explain how Relay 2 managed to fire off a signal that could be mistaken for an FRB.
As mentioned above, the team is certain that this "pseudo-FRB" signal wasn't an intentional emission, as not only has Relay 2 been inoperative for 58 years, but even when it was working, its transmission signal wasn't capable of generating such short-lived radio pulses.
"What caused this signal from Relay 2? That's a good question. We don't know!" Glowacki explained. "One theory is electrostatic discharge (ESD) – a build-up of electricity that results in a spark-like flash. Another is that a micrometeorite had struck the satellite and produced a cloud of charged plasma, right as ASKAP was observing the part of the sky it was in. "
James elaborated that ESD is a spark that is almost exactly the same as the effect generated when you rub your feet on carpet and shock your friend (or enemy).
"Spacecraft get charged with electricity when they pass through ionized gas or 'plasma' above the atmosphere, and when enough charge builds up, they generate a spark," James continued. "New spacecraft are built with materials to reduce the build-up of charge, but when Relay 2 was launched, this wasn't well-understood.
"Hence, perhaps it produced such a big spark because it was old."
The problem with this theory is that all expectations for how sparks should behave suggest they should last tens of microseconds or longer. That's over a thousand times longer than this signal lasted. Additionally, the spacecraft charging described by James occurs mostly during active periods of the sun, and thus so too does the resulting sparking. That activity also impacts the Earth's magnetic bubble, the magnetosphere, and at the time of this "pseudo-FRB," the magnetosphere was extremely quiet.
As for micrometeorite impacts as the culprit, James explained that there are predictions that these tiny flecks of space dust, which weigh no more than a thousandth to a billionth of a gram, can produce flashes of radio waves when they impact a satellite. However, to do this, James said, micrometeorites need to be travelling at about 44,000 miles per hour (around 70,000 km per hour). "Based on one estimate, we think a 22 microgram micrometeorite might have been able to produce a flash such as the one we saw," James said.
Again, the issue with this explanation is that predictions suggest the signal should have lasted microseconds, not milliseconds. Additionally, 22 micro-gram micrometeoroids are not common. James and colleagues estimated only about a 1% chance that they would have been pointing ASKAP toward a satellite at the same time as one hit it.
"We slightly favor the ESD scenario, because the now-collapsed Arecibo telescope once saw similar signals from GPS satellites, albeit lasting 1000 times longer than ours," James added. "But we don't know."
If you are an FRB-nerd like we are at Space.com, there may be a concern clawing at the back of your mind right now. The team was quick to put our minds at rest that other FRBs may be revealed as "pseudo-FRBs."
"The short answer is that's not at all a possibility," James said. "Most telescopes detecting FRBs now also measure exactly where they come from, and can pinpoint their host galaxy, which a satellite wouldn't have. These instruments are very good at identifying the direction of such a signal and getting rid of it.
"If a satellite did miraculously produce an FRB imposter, somebody in charge of the satellite programmed it to produce an artificially dispersed signal just to troll us! In that case, we could always pinpoint the direction of origin and check if there was a satellite there or not."
The biggest clue that an FRB is an artificial signal is its dispersion measure, which Glowacki explains is the effect of a time delay at lower frequencies of radio signals coming from FRBs and pulsars. It is due to ionized electrons slowing the signal at lower frequencies as FRBS travel through space, encountering plasma. This gives astronomers a good indication of how far signals have travelled. "For FRBs, there is such a large delay, due to the amount of ionized electrons between us and what creates the signal, that the only possible explanation is that they nearly always originate from another galaxy, sometimes billions of light years away," Glowacki said. "The signal we had detected barely had any measurable time delay. It had to have come from very close by, relatively speaking."Deller added that it is certainly possible that there are many more such bursts happening from this or other satellites. However, he said that a lack of dispersion is a dead giveaway that a signal came from much closer to Earth than an FRB so cases of mistaken identity aren't likely.
This doesn't mean that this research hasn't highlighted a possible problem that needs to be considered.
"We do need to be wary of confusing such signals with potential sources that are within or very close to our solar system," Glowacki said. "For example, there may be other satellite signals to be detected that may be harder to differentiate."
Related Stories:
— Scientists find universe's missing matter while watching fast radio bursts shine through 'cosmic fog'
— Mysterious fast radio burst traced back to massive 'cosmic graveyard' of ancient stars
— Mysterious fast radio bursts could be caused by asteroids slamming into dead stars
For James, the big question going forward is how this research could help use radio telescopes to monitor satellites. These instruments could be particularly useful for detecting ESD."ESD is a huge problem for satellites, and can cause all kinds of damage," James said. "The problem is that ESD is very difficult to monitor. Mostly, it is only ever a 'suspected' cause, since it's extremely difficult to just go up to check on a satellite and work out what went wrong. So if that can be monitored from the ground relatively easily, that's great!"
Deller agrees, adding there is a lot more to learn about the phenomenon discovered by the team.
"Everyone is still surprised that it was possible to generate such a short-duration pulse," Deller concluded. "I'm hoping that we or some other group detect some more in the coming years and are able to come up with a model for how it happens. "It would be great if that turned out to be useful in terms of helping to avoid damage to satellites."
The team's research is published on the paper repository site arXiv.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Japan launches third rocket to measure climate change
Japan launches third rocket to measure climate change

UPI

time2 hours ago

  • UPI

Japan launches third rocket to measure climate change

A Falcon 9 with Dragon Spacecraft carrying NASA's SpaceX Crew-10 Mission lifts off from Launch Complex 39A at Kennedy Space Center in Florida, in partnership with Japan Aerospace Exploration Agency in March. File photo by Pat Benic/UPI | License Photo June 29 (UPI) -- A Japanese company has launched a rocket designed to monitor sea temperature and greenhouse gases as part of its overall mission to study the effects of climate change on the atmosphere. The Japanese Aerospace Exploration Company launched its 50th and final H-2A rocket mission, sending the GOSAT-GW into orbit from the Yoshinobu Launch Complex at the Tanegashima Space Center in Japan on Sunday. This is the third GOSAT mission to study the effects of climate change on ocean temperatures and fossil fuel and other greenhouse gases and their effect on the planet's ecosystems. The Sunday mission joins the previous flights already in orbit, GCOM-W2, which launched in 2012, known as "SHIZIKU," and GOSAT-1, known as "IBUKI," which was deployed in 2009. Among other instruments, GOSAT-GW is carrying a spectrometer named TANSO to aid in measuring the effects of greenhouse-related climate change. "The obtained data will be used to monitor water vapor profiles, sea ice, and soil water content," the GOSAT website said. Other instruments will monitor sunlight reflection during daylight hours and target and other large emission sources such as power loans and oil and gas facilities.

Scientists Detect Radio Burst From Deepest Space, Then Realize It's Just A Satellite, Then Realize The Satellite Was Signaling From Beyond The Grave
Scientists Detect Radio Burst From Deepest Space, Then Realize It's Just A Satellite, Then Realize The Satellite Was Signaling From Beyond The Grave

Yahoo

time4 hours ago

  • Yahoo

Scientists Detect Radio Burst From Deepest Space, Then Realize It's Just A Satellite, Then Realize The Satellite Was Signaling From Beyond The Grave

A scientific paper was recently published on Cornell University's arXiv describing a radio burst that lasted for a mere 30 nanoseconds. Maybe that doesn't sound too exciting, except that the signal was thought to come from another galaxy. But then it turned out it was just from a satellite. But then it turned out that the satellite had been dead for decades and couldn't actually produce a transmission like that. So now it's a story about a zombie satellite sending impossible messages from beyond the grave, in space. Interested yet? In June 2024, the Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope detected what was thought to be a fast radio burst (FRB). Makes sense, as that was exactly what the telescope was trying to find. From reporting by FRBs remain something of a mystery even 20 years after their discovery, which of course just make scientists want to study them more. So detecting one was pretty great... until the team examining the find realized that the FRB made no sense at all. For one thing, the signal was too short — FRBs typically last micro- or milliseconds, not mere nanoseconds. Yes, those time frames are all incredibly small, but they are orders of magnitude apart. The radio telescope's image of it was also very fuzzy, which, like with a normal camera, indicated that the source was actually very, very close, not in a distant galaxy, where other FRB signals were from. What on Earth (or off it) was going on? Well, the answer turned out to be very boring, right before it got incredibly weird. Read more: These Cars Are Going To Age Terribly Once scientists had worked out the exact origin position of the signal, they realized that it was actually so close to Earth that it might well be a satellite, per New Scientist. They cross-referenced with known orbits, and sure enough, one popped up. Ah, darn, just a satellite then. No big deal — hey wait, is that satellite dead? Yes, and not just dead, but long dead. NASA's Relay 2 was in fact one of the first ever satellites, launched all the way back in 1964 at the dawn of the space age. Along with its sister Relay 1, these were experimental communications satellites intended to map the Van Allen radiation belt, per our friends at Gizmodo. Then in June 1967 (everything in this story happens in June, weird), the transponders failed, and that was the end of that. Except, now it isn't. Apparently the long-dead experimental communications satellite decided to get very experimental with its communications, since it sent out a radio burst all of a sudden. If you're wondering how a dead satellite can do that, you're not alone, because no one knows for sure. In fact, the on-board equipment is not even capable of transmitting a 30 nanosecond pulse. Rising from the grave to send impossible messages? What is this, space Ouija? In their scientific paper, the team theorizes one of two possible explanations, as lays out. First is that an electrostatic discharge (ESD) might have built up, causing a brief spark that caused a radio burst. Think of rubbing your hand along a carpet, then touching something metal. In space, the "carpet" would be ionized gas or plasma, so if Relay 2 passed through some of that, it might have sparked. This has actually been observed before, but again, at much longer timescales than 30 nanoseconds, which might count against this theory. If it does prove to be true, it actually has some practical value. ESDs are known to cause damage to satellites, but they are difficult to detect. Possibly, these scientists have stumbled on a way to detect them, making it easier to diagnose a faulty satellite. The second theory, as if this all couldn't get any better, was that the zombie satellite was actually hit by a teeny tiny micrometeorite traveling at 44,000 mph. This little hypothetical guy would only be a few micrograms, but if it struck Relay 2, it would create a puff of charged plasma, which is what the radio telescope would have detected. Both of these are still just theories, and really, nobody knows for sure. If you think that space necromancers must surely be involved, I wouldn't doubt it. It all just goes to show that space is a vast, weird place, and even our brightest minds are still only just scratching the surface of all it has to tell us. Want more like this? Join the Jalopnik newsletter to get the latest auto news sent straight to your inbox... Read the original article on Jalopnik.

Morrison students help University of Michigan researchers with NASA solar disturbance study
Morrison students help University of Michigan researchers with NASA solar disturbance study

Yahoo

time8 hours ago

  • Yahoo

Morrison students help University of Michigan researchers with NASA solar disturbance study

Jun. 28—MORRISON — High school students across the U.S., including 10 from Morrison High School, have been part of a project that has detected radio waves associated with solar disturbances using $500 antenna kits, contributing real scientific data to NASA. The data helps scientists understand these disturbances and could help create early warnings to protect satellites and power grids on Earth, as well as astronauts and their equipment from dangerous solar storms. Morrison High School got involved in the program in October 2023, when 10 MHS students from now-retired teacher Gregg Dolan's physics class helped University of Michigan research professor and MHS graduate Ward "Chip" Manchester assemble and install an antenna on the school's roof. Those students were Zayden Boonstra, Blake Adams, Caden Bielema, Lisa Hardesty, Cameron McDonnell, Madison Banks, Alyvia Behrens, Cooper Bush, Chase Newman and Gigi Connelly. "The students thoroughly enjoyed helping set up the antenna and learning what's going on and figuring stuff out in space, because they just don't get a lot of it in school," said Dolan, who for the last 18 years of his career would devote the third quarter of the physics class to astronomy. "I also gave a presentation about the mission, coronal mass ejections, solar eruptions and how they propagate through space, and how the radio emission occurs," Manchester said. "One student who had gone to Morrison was a freshman in the College of Engineering at Michigan, and was also there helping out." The antenna they put up is part of the SunRISE Ground Radio Lab, a science program inviting people to use a multifrequency radio telescope to listen to radio signals from space. The SunRISE GRL is a collaborative effort between UM and NASA's Sun Radio Interferometer Space Experiment mission. UM associate research scientist and SunRISE GRL lead researcher Mojtaba Akhavan-Tafti said SunRISE is a group of six small satellites that will work together to study the sun's low-frequency radio emissions. It will help scientists better understand how solar storms form. Akhavan-Tafti said the SunRISE mission began in 2018, when NASA selected a collaborative proposal from UM and NASA's Jet Propulsion Laboratory to move forward with development. By 2020, the college had launched a multidisciplinary design program, bringing together undergraduate and graduate students to design, build and test ground-based antenna arrays in support of the SunRISE satellite mission. "After that program successfully launched, NASA came back to us and said, 'Hey, given the success of the program, do you think you could get high school students involved in the project?'" Akhavan-Tafti said. "We accepted the challenge." The SunRISE GRL now works with 18 high schools nationwide, building antennas that detect radio waves from solar phenomena. The dual dipole antennas are designed to detect a specific range of low radio frequencies — between 8 and 24 megahertz — that are linked to solar events such as coronal mass ejections, which emit radio waves as they form and travel through space. "Instead of making the antennas that were costing us around $25,000 a unit, we took it to our team, and we redesigned the antenna to be only $500," Akhavan-Tafti said. "It's a different type of antenna, different type of frequency; however, it observes the same phenomena in space." That data helps in understanding space weather and its effects on technology and human life, providing early warnings of CMEs that can affect Earth. "We can look at these solar radio bursts to tell us many days in advance that there is a storm potentially coming so that you can prepare for those types of big solar events, and so that your assets and astronauts are operating in safe environments," Akhavan-Tafti said. Although scientists still are figuring out exactly when during a CME's journey these radio signals are produced, Akhavan-Tafti said the waves themselves travel at the speed of light — reaching Earth in just minutes or hours, far faster than the CMEs, which can take days to arrive. According to the National Weather Service's Space Weather Prediction Center, a CME is a massive burst of solar plasma and magnetic field released from the sun's outer atmosphere, or corona. These eruptions can trigger geomagnetic storms that may disrupt satellites, power grids and communications on Earth. Akhavan-Tafti said the latest results from the SunRISE GLR program focus on validating the new instruments by confirming they can detect patterns seen in past studies. "When you come up with a new instrument, you want to first make sure that it replicates previous data," Akhavan-Tafti said. "Not every surprise is a good surprise." A study, which Akhavan-Tafti said was released Wednesday, June 25, links solar radio bursts — specifically Type II radio bursts — to CMEs, as previous high-resolution space- and ground-based observations have done. What sets SunRISE apart is its use of interferometry, a method where signals from multiple antennas with unknown exact positions are combined to pinpoint the source of radio emissions. Akhavan-Tafti said this is the first time such a technique has been applied to this kind of solar observation. "One of the open science questions, after all this time, is: Exactly where are these signals coming from?" Akhavan-Tafti said. Together, the students and researchers are seeking to answer that and other research questions, such as: What are the mechanisms behind solar flares and CMEs? How do they manifest in radio emissions? What are the mechanisms behind various types of radio bursts observed on the sun, and how do they relate to space weather phenomena? Akhavan-Tafti said the SunRISE GRL aims to inspire the next generation of science, technology, engineering, arts and math students through hands-on citizen-science activities. "It would be great if they're exposed to STEAM and those types of activities to get a sense of what it's like to be a scientist or an engineer or an entrepreneur in the sciences," Akhavan-Tafti said. "That requires students to be trained to understand that these careers exist and to take courses that are going to prepare them for those types of future careers, and that's what NASA wanted us to do." One of the key scientific advantages of the SunRISE mission is its ability to detect very low-frequency radio waves — right down to what is called the plasma cutoff frequencies, which Manchester said are the "lowest frequencies available to the antenna." On Earth, the ionosphere acts as a filter, blocking radio waves below a certain frequency. "The ionosphere can only allow radio waves of certain frequencies to pass through. High frequencies go through OK, but if a frequency gets too low, the ionosphere absorbs it," Manchester said. "It almost becomes what's called the plasma frequency ... and it will just absorb it, almost like a DC current." Manchester said this makes the space-based SunRISE array especially powerful. "We have this cutoff frequency that we have to deal with, where we can't see radio waves below that frequency on Earth's surface because the ionosphere absorbs it," Manchester said. "The space mission doesn't have that issue ... so it can go to much, much lower frequencies." He said that access to lower frequencies in space is what makes the mission so compelling. "That allows us to track features much further out into the solar wind. The further out they go, the lower the natural frequency," Manchester said. "On Earth, those get cut off pretty quickly. But in space, we're gonna be able to track them much, much further out." For Akhavan-Tafti, the impact of the program goes beyond research. "These types of programs are allowing us to use federal funding to educate the next generation of entrepreneurs, policymakers, scientists and engineers of our nation," Akhavan-Tafti said. He hopes more schools will take advantage of the opportunity. "This is an open call — if any other high schools in the area think that they could benefit from this, everything is free of charge to the schools," Akhavan-Tafti said. "If they're interested in getting involved, they're welcome to contact us." For more information or to contact Akhavan-Tafti, visit the project's website at

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store