logo
#

Latest news with #AustralianAlps

These moths use stars to navigate, just like humans
These moths use stars to navigate, just like humans

Yahoo

time3 days ago

  • Science
  • Yahoo

These moths use stars to navigate, just like humans

If you purchase an independently reviewed product or service through a link on our website, BGR may receive an affiliate commission. We've long known that some animals depend on the Sun to navigate the world. However, new research may have uncovered the first insect we know of that does the same using the stars and night sky. The stars have long been a navigational tool for humans. For instance, think of the North Star. However, we've never discovered any insects that use them the same way we do. At least not before the bogong moth. According to new research published this year, these moths actually rely on the stars the same way that humans do. Each spring, these moths travel more than 600 miles using the stars as their guide. The journey is an important one for the moths, which rely on the cool climate of the Australian Alps to keep them safe from the obtrusive summer heat. Today's Top Deals Best deals: Tech, laptops, TVs, and more sales Best Ring Video Doorbell deals Memorial Day security camera deals: Reolink's unbeatable sale has prices from $29.98 The thing about bogong moths is that these insects have never traveled to the mountains before they make their yearly migration. This isn't a path that they take every year of their lives. Many of these insects only live a matter of days or weeks. So, there had to be some way for them to get where they were meant to be. The only answer researchers could reach was stellar navigation. As I noted above, this form of navigation has been a mainstay in human travels for centuries. It's one of the primary ways that sailors used to navigate the high seas, and without any kind of land to mark the horizon, being able to tell which way you were traveling just from looking up was extremely important. And in the Australian outback, where the bogong moths live, one of the most prominent landmarks is the Milky Way. So, it makes sense that these insects might rely on such a prominent figure in the sky to get them around the world. But a theory can only go so far. To truly test it, researchers had to capture some of the insects and put them through some tests. To test that they actually rely on the stars and not Earth's magnetic field, the researchers did everything they could to negate the force of Earth's magnetic field. This allowed them to see that bogong moths do indeed rely on the stars in the night sky to see where they're going. The researchers hope that by learning more about how these insects get around, it could help with conservation efforts in the future. For now, knowing that some animals and insects rely on the stars can help us look deeper into the animal kingdom for others that do the same. It can also help us better understand how light pollution, which continues to get worse, might affect these creatures. More Top Deals Amazon gift card deals, offers & coupons 2025: Get $2,000+ free See the

Meet the tiny Australian Moth that travels 1,000 km and navigates using the stars
Meet the tiny Australian Moth that travels 1,000 km and navigates using the stars

Yahoo

time22-06-2025

  • Science
  • Yahoo

Meet the tiny Australian Moth that travels 1,000 km and navigates using the stars

An Australian moth follows the stars during its yearly migration, using the night sky as a guiding compass, according to a new study. When temperatures heat up, nocturnal Bogong moths fly about 1,000 kilometres to cool down in caves by the Australian Alps. They later return home to breed and die. Birds routinely navigate by starlight, but the moths are the first known invertebrates, or creatures without a backbone, to find their way across such long distances using the stars. Scientists have long wondered how the moths travel to a place they've never been. A previous study hinted that Earth's magnetic field might help steer them in the right direction, along with some kind of visual landmark as a guide. Related Does cutting off rhinos' horns protect them from poachers? New study supports controversial approach Since stars appear in predictable patterns each night, scientists suspected they might help lead the way. They placed moths in a flight simulator that mimicked the night sky above them and blocked out the Earth's magnetic field, noting where they flew. Then they scrambled the stars and saw how the moths reacted. When the stars were as they should be, the moths flapped in the right direction. But when the stars were in random places, the moths were disoriented. Their brain cells also got excited in response to specific orientations of the night sky. The findings were published Wednesday in the journal Nature. It 'was a very clean, impressive demonstration that the moths really are using a view of the night sky to guide their movements,' said Kenneth Lohmann, who studies animal navigation at the University of North Carolina at Chapel Hill and was not involved with the new research. Researchers don't know what features of the night sky the moths use to find their way. It could be a stripe of light from the Milky Way, a colourful nebula or something else entirely. Whatever it is, the insects seem to rely on that, along with Earth's magnetic field, to make their journey. Related Rare snail that can 'slurp up earthworms like noodles' caught on camera laying an egg from its neck Scientists use special 'squeezing' and electrical probes to collect sperm from endangered kākāpō Other animals harness the stars as a guide. Birds take celestial cues as they soar through the skies, and dung beetles roll their remains short distances while using the Milky Way to stay on course. It's an impressive feat for Bogong moths, whose brains are smaller than a grain of rice, to rely on the night sky for their odyssey, said study author David Dreyer with Lund University in Sweden. 'It's remarkable that an animal with such a tiny brain can actually do this,' Dreyer said.

Meet the tiny Australian Moth that travels 1,000 km and navigates using the stars
Meet the tiny Australian Moth that travels 1,000 km and navigates using the stars

Yahoo

time22-06-2025

  • Science
  • Yahoo

Meet the tiny Australian Moth that travels 1,000 km and navigates using the stars

An Australian moth follows the stars during its yearly migration, using the night sky as a guiding compass, according to a new study. When temperatures heat up, nocturnal Bogong moths fly about 1,000 kilometres to cool down in caves by the Australian Alps. They later return home to breed and die. Birds routinely navigate by starlight, but the moths are the first known invertebrates, or creatures without a backbone, to find their way across such long distances using the stars. Scientists have long wondered how the moths travel to a place they've never been. A previous study hinted that Earth's magnetic field might help steer them in the right direction, along with some kind of visual landmark as a guide. Related Does cutting off rhinos' horns protect them from poachers? New study supports controversial approach Since stars appear in predictable patterns each night, scientists suspected they might help lead the way. They placed moths in a flight simulator that mimicked the night sky above them and blocked out the Earth's magnetic field, noting where they flew. Then they scrambled the stars and saw how the moths reacted. When the stars were as they should be, the moths flapped in the right direction. But when the stars were in random places, the moths were disoriented. Their brain cells also got excited in response to specific orientations of the night sky. The findings were published Wednesday in the journal Nature. It 'was a very clean, impressive demonstration that the moths really are using a view of the night sky to guide their movements,' said Kenneth Lohmann, who studies animal navigation at the University of North Carolina at Chapel Hill and was not involved with the new research. Researchers don't know what features of the night sky the moths use to find their way. It could be a stripe of light from the Milky Way, a colourful nebula or something else entirely. Whatever it is, the insects seem to rely on that, along with Earth's magnetic field, to make their journey. Related Rare snail that can 'slurp up earthworms like noodles' caught on camera laying an egg from its neck Scientists use special 'squeezing' and electrical probes to collect sperm from endangered kākāpō Other animals harness the stars as a guide. Birds take celestial cues as they soar through the skies, and dung beetles roll their remains short distances while using the Milky Way to stay on course. It's an impressive feat for Bogong moths, whose brains are smaller than a grain of rice, to rely on the night sky for their odyssey, said study author David Dreyer with Lund University in Sweden. 'It's remarkable that an animal with such a tiny brain can actually do this,' Dreyer said.

Scientists say a tiny brown moth navigates 600 miles using stars — just like humans and birds
Scientists say a tiny brown moth navigates 600 miles using stars — just like humans and birds

Yahoo

time21-06-2025

  • Science
  • Yahoo

Scientists say a tiny brown moth navigates 600 miles using stars — just like humans and birds

(CNN) — Each year, a tiny species in Australia makes a grueling 620-mile (1,000-kilometer) nighttime migration, and it's pulling off the feat in a way only humans and migratory birds have been known to do, a new study has found. Bogong moths looking to escape the heat travel in the spring from all over southeastern Australia to cool caves in the Australian Alps, where they huddle in a dormant state. The insects then fly all the way back in the fall to mate and die. Researchers replicated the conditions of this astonishing journey in the lab and discovered a key tool the moths used to find their way: the starry night sky. 'It is an act of true navigation,' said Eric Warrant, head of the Division of Sensory Biology at Lund University in Sweden, and a coauthor of the study published Wednesday in the journal Nature. 'They're able to use the stars as a compass to find a specific geographic direction to navigate, and this is a first for invertebrates.' Stars are not the only navigational cue the insects use to reach their destination. They can also detect Earth's magnetic field, according to evidence found by previous research conducted by Warrant and some of his colleagues from the new study. By using two cues, the moths have a backup in case either system fails — for example, if there is a magnetic anomaly or the night sky is cloudy. 'With a very small brain, a very small nervous system, (the moths) are able to harness two relatively complex cues and not only detect them, but also use them to work out where to go,' Warrant added. 'And I think that just adds a piece to the growing consensus that the insects have quite remarkable abilities and are truly amazing creatures.' Native to Australia, the Bogong moth, or Agrotis infusa, is entirely nocturnal and has an adult wingspan of about 2 inches (5 centimeters). 'They're a very nondescript little brown moth, that people would not necessarily distinguish from any other little brown moth,' Warrant said. Even though the moths normally migrate in the billions, their numbers have crashed in recent years, and the species is now endangered and appears on the International Union for Conservation of Nature's Red List. After discovering about five years ago that the insects could sense Earth's magnetic field, Warrant said he suspected that they might also be using visual cues to support their navigation. To test the theory, Warrant — who is from Australia — set up a lab with his colleagues in his own house, about 93 miles (150 kilometers) north of the moths' final destination in the Australian Alps. 'We captured the moths using a light trap, we brought them back to the lab, and then we glued a very thin rod on their back, made out of tungsten, which is nonmagnetic. Once you've done that, you can hold that little rod between your fingers, and the moth will fly very vigorously on the end of that tether,' he said. The researchers then coupled that rod to another one, also made of tungsten but much longer, allowing each moth to fly in any direction while an optical sensor detected exactly where the insect was going, relative to north, every five seconds. The experiment was set up in an enclosed, cylindrical 'moth arena,' with an image of the southern night sky projected on the roof, replicating exactly what was outside the lab on the day and time of the experiment. 'What we found is that moth after moth flew in their inherited migratory direction,' Warrant said. 'In other words, the direction they should fly in order to reach the caves in spring, which is a southwards direction for the moths we caught, or northwards away from the caves in autumn, which is very interesting.' Crucially, the effect of Earth's magnetic field was removed from the arena, via a device called a Helmholtz coil, which created a 'magnetic vacuum' so that the moths could only use visual cues. 'The moths couldn't rely on the Earth's magnetic field to do this task,' Warrant said. 'They had to rely on the stars. And they did.' About 400 moths were captured for this behavioral experiment and safely released afterward. The researchers collected a smaller sample of about 50 moths to try to understand the neural mechanism they used to navigate, which involved sticking electrodes in the insects' brains and resulted in death. 'A little moth can't see many stars, because its eye has a pupil which is only about 1/10th of the width of our own pupil at night,' Warrant said. 'But it turns out, because of the optics of the eye, they're able to see that dim, nocturnal world about 15 times more brightly than we do, which is fantastic, because they would be able to see the Milky Way much more vividly.' Warrant said he believes the insects are using this enhanced brightness as a visual compass to keep heading in the right direction. Apart from birds and humans, only two other animals navigate in a similar way, but with crucial differences from the moths, according to Warrant. The North American monarch butterfly also migrates over long distances using a single star as a compass, but that star is the sun, as the insect only flies during daytime. And some dung beetles use the Milky Way to find their way at night, but for the much simpler task of going in a straight line over a short distance, which does not really compare with the moths' long journey to a highly specific destination. What makes the Bogong moth's skill even more extraordinary is that the insect only makes this trip once in its life, so its ability to navigate must be innate. 'Their parents have been dead for three months, so nobody's shown them where to go,' Warrant said. 'They just emerge from the soil in spring in some far-flung area of southeastern Australia, and they just simply know where to go. It's totally amazing.' Warrant and his colleagues have not only discovered an entirely new compass mechanism in a migrating insect, but they have opened up an exciting avenue of research, as there are still many questions remaining about how the moths detect and use the information from their star compass, according to Jason Chapman, an associate professor at the Centre for Ecology and Conservation of the UK's University of Exeter. Chapman was not involved in the new research. 'Many questions remain,' he added via email, 'such as how the Bogong moths detect the information, how they use it to determine the appropriate direction in which to fly through the course of the night and between seasons, how they integrate their star and magnetic compasses, and how widespread these mechanisms may (or may not) be among other migratory moths and other nocturnal insects.' The findings are really exciting and add to scientists' knowledge about the ways that insects travel vast distances across continents, said Jane Hill, a professor of ecology at the University of York in the UK, who also was not involved with the study. 'They are able to navigate in the appropriate direction even though the stars move each night across the sky,' she said. 'This feat of insect migration is even more amazing given that different generations make the journey each year and there are no moths from previous generations to show the way. Sign up for CNN's Wonder Theory science newsletter. Explore the universe with news on fascinating discoveries, scientific advancements and more.

Tiny brown moth navigates 600 miles using stars — just like humans and birds
Tiny brown moth navigates 600 miles using stars — just like humans and birds

CNN

time20-06-2025

  • Science
  • CNN

Tiny brown moth navigates 600 miles using stars — just like humans and birds

(CNN) — Each year, a tiny species in Australia makes a grueling 620-mile (1,000-kilometer) nighttime migration, and it's pulling off the feat in a way only humans and migratory birds have been known to do, a new study has found. Bogong moths looking to escape the heat travel in the spring from all over southeastern Australia to cool caves in the Australian Alps, where they huddle in a dormant state. The insects then fly all the way back in the fall to mate and die. Researchers replicated the conditions of this astonishing journey in the lab and discovered a key tool the moths used to find their way: the starry night sky. 'It is an act of true navigation,' said Eric Warrant, head of the Division of Sensory Biology at Lund University in Sweden, and a coauthor of the study published Wednesday in the journal Nature. 'They're able to use the stars as a compass to find a specific geographic direction to navigate, and this is a first for invertebrates.' Stars are not the only navigational cue the insects use to reach their destination. They can also detect Earth's magnetic field, according to evidence found by previous research conducted by Warrant and some of his colleagues from the new study. By using two cues, the moths have a backup in case either system fails — for example, if there is a magnetic anomaly or the night sky is cloudy. 'With a very small brain, a very small nervous system, (the moths) are able to harness two relatively complex cues and not only detect them, but also use them to work out where to go,' Warrant added. 'And I think that just adds a piece to the growing consensus that the insects have quite remarkable abilities and are truly amazing creatures.' Native to Australia, the Bogong moth, or Agrotis infusa, is entirely nocturnal and has an adult wingspan of about 2 inches (5 centimeters). 'They're a very nondescript little brown moth, that people would not necessarily distinguish from any other little brown moth,' Warrant said. Even though the moths normally migrate in the billions, their numbers have crashed in recent years, and the species is now endangered and appears on the International Union for Conservation of Nature's Red List. After discovering about five years ago that the insects could sense Earth's magnetic field, Warrant said he suspected that they might also be using visual cues to support their navigation. To test the theory, Warrant — who is from Australia — set up a lab with his colleagues in his own house, about 93 miles (150 kilometers) north of the moths' final destination in the Australian Alps. 'We captured the moths using a light trap, we brought them back to the lab, and then we glued a very thin rod on their back, made out of tungsten, which is nonmagnetic. Once you've done that, you can hold that little rod between your fingers, and the moth will fly very vigorously on the end of that tether,' he said. The researchers then coupled that rod to another one, also made of tungsten but much longer, allowing each moth to fly in any direction while an optical sensor detected exactly where the insect was going, relative to north, every five seconds. The experiment was set up in an enclosed, cylindrical 'moth arena,' with an image of the southern night sky projected on the roof, replicating exactly what was outside the lab on the day and time of the experiment. 'What we found is that moth after moth flew in their inherited migratory direction,' Warrant said. 'In other words, the direction they should fly in order to reach the caves in spring, which is a southwards direction for the moths we caught, or northwards away from the caves in autumn, which is very interesting.' Crucially, the effect of Earth's magnetic field was removed from the arena, via a device called a Helmholtz coil, which created a 'magnetic vacuum' so that the moths could only use visual cues. 'The moths couldn't rely on the Earth's magnetic field to do this task,' Warrant said. 'They had to rely on the stars. And they did.' About 400 moths were captured for this behavioral experiment and safely released afterward. The researchers collected a smaller sample of about 50 moths to try to understand the neural mechanism they used to navigate, which involved sticking electrodes in the insects' brains and resulted in death. 'A little moth can't see many stars, because its eye has a pupil which is only about 1/10th of the width of our own pupil at night,' Warrant said. 'But it turns out, because of the optics of the eye, they're able to see that dim, nocturnal world about 15 times more brightly than we do, which is fantastic, because they would be able to see the Milky Way much more vividly.' Warrant said he believes the insects are using this enhanced brightness as a visual compass to keep heading in the right direction. Apart from birds and humans, only two other animals navigate in a similar way, but with crucial differences from the moths, according to Warrant. The North American monarch butterfly also migrates over long distances using a single star as a compass, but that star is the sun, as the insect only flies during daytime. And some dung beetles use the Milky Way to find their way at night, but for the much simpler task of going in a straight line over a short distance, which does not really compare with the moths' long journey to a highly specific destination. What makes the Bogong moth's skill even more extraordinary is that the insect only makes this trip once in its life, so its ability to navigate must be innate. 'Their parents have been dead for three months, so nobody's shown them where to go,' Warrant said. 'They just emerge from the soil in spring in some far-flung area of southeastern Australia, and they just simply know where to go. It's totally amazing.' Warrant and his colleagues have not only discovered an entirely new compass mechanism in a migrating insect, but they have opened up an exciting avenue of research, as there are still many questions remaining about how the moths detect and use the information from their star compass, according to Jason Chapman, an associate professor at the Centre for Ecology and Conservation of the UK's University of Exeter. Chapman was not involved in the new research. 'Many questions remain,' he added via email, 'such as how the Bogong moths detect the information, how they use it to determine the appropriate direction in which to fly through the course of the night and between seasons, how they integrate their star and magnetic compasses, and how widespread these mechanisms may (or may not) be among other migratory moths and other nocturnal insects.' The findings are really exciting and add to scientists' knowledge about the ways that insects travel vast distances across continents, said Jane Hill, a professor of ecology at the University of York in the UK, who also was not involved with the study. 'They are able to navigate in the appropriate direction even though the stars move each night across the sky,' she said. 'This feat of insect migration is even more amazing given that different generations make the journey each year and there are no moths from previous generations to show the way.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store