logo
#

Latest news with #CanadaFranceHawaiiTelescope

Astronomers discover strange solar system body dancing in sync with Neptune: 'Like finding a hidden rhythm in a song'
Astronomers discover strange solar system body dancing in sync with Neptune: 'Like finding a hidden rhythm in a song'

Yahoo

time4 days ago

  • Science
  • Yahoo

Astronomers discover strange solar system body dancing in sync with Neptune: 'Like finding a hidden rhythm in a song'

When you buy through links on our articles, Future and its syndication partners may earn a commission. Astronomers have found that a weird space rock at the edge of the solar system is locked in a rhythmic dance with Neptune. The object, designated 2020 VN40, is part of a family of distant solar system objects called trans-Neptunian objects (TNOs). 2020 VN40 is the first object discovered that orbits the sun once for every ten orbits Neptune makes. Considering that one Neptunian year lasts 164.8 Earth years, that means 2020 VN40 has one heck of a long year, lasting around 1,648 years or 19,776 months on Earth! The team behind this research thinks that 2020 VN40's ponderous orbital dance with Neptune may have come about when it was temporarily snared by the gravity of the ice giant planet. Thus, this discovery could help researchers better understand the dynamics of bodies at the edge of the solar system. "This is a big step in understanding the outer solar system," team leader Rosemary Pike from the Center for Astrophysics | Harvard & Smithsonian said in a statement. "It shows that even very distant regions influenced by Neptune can contain objects, and it gives us new clues about how the solar system evolved." The orbital rhythm of 2020 VN40 was discovered in data from the Large inclination Distant Objects (LiDO) survey. LiDO uses the Canada-France-Hawaii Telescope with backup from the Gemini Observatory and the Walter Baade Telescope to search the outer solar system for weird objects. In particular, LiDO specializes in hunting TNOs with orbits that take them far above and below the orbital plane of Earth around the sun. These are regions of the solar system that have thus far only been sparsely explored by astronomers. "It has been fascinating to learn how many small bodies in the solar system exist on these very large, very tilted orbits," LiDO team member and University of Regina researcher Samantha Lawler said. The highly tilted path of 2020 VN40 finds it at an average distance from the sun equivalent to 140 times the distance between Earth and our star. However, the most interesting element of the orbit of 2020 VN40 is its resonance with the orbit of Neptune. Other bodies rhythmically aligned with Neptune make their closest approaches to the sun, their perihelion, when Neptune is at its greatest distance from our star, or its aphelion. Defying this trend, 2020 VN40 is at perihelion when Neptune is also close to the sun. That's if one were looking at it from above the solar system, with the tilt of 2020 VN40 meaning that this TNO and Neptune are not actually close together; the TNO is actually far below the solar system. This also separates 2020 VN40 from other resonant TNOs, which tend to stay within the plane of the solar system when they make close approaches to the sun. "This new motion is like finding a hidden rhythm in a song we thought we knew," team member and University of California Santa Cruz scientist Ruth Murray-Clay said. "It could change how we think about the way distant objects move." Related Stories: — Astronomers discover a cosmic 'fossil' at the edge of our solar system. Is this bad news for 'Planet 9'? — Icy asteroids help the James Webb Space Telescope uncover Neptune's history —Messenger comets might be why Earth has life, asteroid Ryugu samples suggest Revealing the orbital strangeness of 2020 VN40 suggests that solar system objects with highly tilted orbits can adopt novel and unexpected types of movement. The hunt is now on for more bodies like 2020 VN40, with the newly operating Vera C. Rubin Observatory set to play a key role in this investigation. "This is just the beginning," team member and Planetary Science Institute researcher Kathryn Volk said. "We're opening a new window into the solar system's past." The 2020 VN40 results were published on July 7 in The Planetary Science Journal. Solve the daily Crossword

Possible new dwarf planet spotted near the edge of the solar system
Possible new dwarf planet spotted near the edge of the solar system

GMA Network

time30-05-2025

  • Science
  • GMA Network

Possible new dwarf planet spotted near the edge of the solar system

Cutout images of all 19 detections of the newly identified trans-Neptunian object named 2017 OF201 are seen, from the Canada France Hawaii Telescope (CFHT) and the Dark Energy Camera (DECam) on the 4-meter Victor M. Blanco Telescope, released by the Institute for Advanced Study in Princeton, New Jersey, on May 22, 2025. Jiaxuan Li and Sihao Cheng/Handout via REUTERS WASHINGTON - Scientists have identified an object about 435 miles (700 km) wide inhabiting the frigid outer reaches of our solar system that might qualify as a dwarf planet, spotting it as it travels on a highly elongated orbital path around the sun. The researchers called it one of the most distant visible objects in our solar system, and said its existence indicates that a vast expanse of space beyond the outermost planet Neptune and a region called the Kuiper Belt may not be deserted, as long thought. The Kuiper Belt is populated by numerous icy bodies. Given the name 2017 OF201, the object falls into a category called trans-Neptunian objects that orbit the sun at a distance beyond that of Neptune. The object takes about 25,000 years to complete a single orbit of the sun, compared to 365 days for Earth to do so. The researchers said 2017 OF201 was identified in observations by telescopes in Chile and Hawaii spanning seven years. "It is potentially large enough to qualify as a dwarf planet. Its orbit is very wide and eccentric, which means it experienced an interesting orbital migration path in the past," said astrophysicist Sihao Cheng of the Institute for Advanced Study in Princeton, New Jersey, who led the study with collaborators Jiaxuan Li and Eritas Yang, graduate students at Princeton University. Its size is estimated to be a bit smaller than Ceres, which is the smallest of the solar system's five recognized dwarf planets and has a diameter of about 590 miles (950 km). Pluto, the largest of those dwarf planets, has a diameter of about 1,477 miles (2,377 km). The mass of 2017 OF201 is estimated to be about 20,000 times smaller than Earth's and 50 times smaller than Pluto's. "We don't know the shape yet. Unfortunately it is too far away and it is a bit difficult to resolve it with telescopes," Cheng said. "Its composition is totally unknown yet, but likely similar to other icy bodies." The discovery was announced by the Minor Planet Center of the International Astronomical Union, an international organization of astronomers, and detailed in a study posted on the open-access research site arXiv. The study has not yet been peer reviewed. Earth's orbital distance from the sun is called an astronomical unit. 2017 OF201 is currently located at a distance of 90.5 astronomical units from the sun, meaning 90.5 times as far as Earth. But at its furthest point during its orbit, 2017 OF201 is more than 1,600 astronomical units from the sun, while the closest point on its orbit is about 45 astronomical units. That means it sometimes is closer to the sun than Pluto, whose orbital distance ranges from 30 to 49 astronomical units as it travels an elliptical path around the sun. The researchers suspect that the extreme orbit of 2017 OF201 may have been caused by a long-ago close encounter with the gravitational influence of a giant planet. "We still don't know much about the solar system far away because currently it is difficult to directly see things beyond about 150 astronomical units," Cheng said. "The presence of this single object suggests that there could be another hundred or so other objects with similar orbit and size. They are just too far away to be detectable right now." The five dwarf planets recognized by the International Astronomical Union are, in order of distance from the sun: Ceres, which is the largest object in the asteroid belt between Mars and Jupiter, then Pluto, Haumea, Makemake and Eris, which all orbit beyond Neptune. The organization defines a planet and a dwarf planet differently. A planet must orbit its host star - in our case the sun - and must be mostly round and sufficiently large that its gravitational strength clears away any other objects of similar size near its orbit. A dwarf planet must orbit the sun and be mostly round but it has not cleared its orbit of other objects. Cheng said the discovery of 2017 OF201 has implications for hypotheses involving the potential existence of a ninth planet in our solar system, dubbed Planet X or Planet Nine. This is because 2017 OF201's orbit does not follow the pattern exhibited by other known trans-Neptunian objects, which tend to cluster together. Some scientists had hypothesized that such clustering was caused by the gravity of a yet-to-be discovered planet. "The existence of 2017 OF201 as an outlier to such clustering could potentially challenge this hypothesis," Cheng said. — Reuters

Possible new dwarf planet spotted near the edge of the solar system
Possible new dwarf planet spotted near the edge of the solar system

Japan Today

time30-05-2025

  • Science
  • Japan Today

Possible new dwarf planet spotted near the edge of the solar system

FILE PHOTO: Cutout images of all 19 detections of the newly identified trans-Neptunian object named 2017 OF201 are seen, from the Canada France Hawaii Telescope (CFHT) and the Dark Energy Camera (DECam) on the 4-meter Victor M. Blanco Telescope, released by the Institute for Advanced Study in Princeton, New Jersey, on May 22, 2025. Jiaxuan Li and Sihao Cheng/Handout via REUTERS By Will Dunham -Scientists have identified an object about 435 miles (700 km) wide inhabiting the frigid outer reaches of our solar system that might qualify as a dwarf planet, spotting it as it travels on a highly elongated orbital path around the sun. The researchers called it one of the most distant visible objects in our solar system, and said its existence indicates that a vast expanse of space beyond the outermost planet Neptune and a region called the Kuiper Belt may not be deserted, as long thought. The Kuiper Belt is populated by numerous icy bodies. Given the name 2017 OF201, the object falls into a category called trans-Neptunian objects that orbit the sun at a distance beyond that of Neptune. The object takes about 25,000 years to complete a single orbit of the sun, compared to 365 days for Earth to do so. The researchers said 2017 OF201 was identified in observations by telescopes in Chile and Hawaii spanning seven years. "It is potentially large enough to qualify as a dwarf planet. Its orbit is very wide and eccentric, which means it experienced an interesting orbital migration path in the past," said astrophysicist Sihao Cheng of the Institute for Advanced Study in Princeton, New Jersey, who led the study with collaborators Jiaxuan Li and Eritas Yang, graduate students at Princeton University. Its size is estimated to be a bit smaller than Ceres, which is the smallest of the solar system's five recognized dwarf planets and has a diameter of about 590 miles (950 km). Pluto, the largest of those dwarf planets, has a diameter of about 1,477 miles (2,377 km). The mass of 2017 OF201 is estimated to be about 20,000 times smaller than Earth's and 50 times smaller than Pluto's. "We don't know the shape yet. Unfortunately it is too far away and it is a bit difficult to resolve it with telescopes," Cheng said. "Its composition is totally unknown yet, but likely similar to other icy bodies." The discovery was announced by the Minor Planet Center of the International Astronomical Union, an international organization of astronomers, and detailed in a study posted on the open-access research site arXiv. The study has not yet been peer reviewed. Earth's orbital distance from the sun is called an astronomical unit. 2017 OF201 is currently located at a distance of 90.5 astronomical units from the sun, meaning 90.5 times as far as Earth. But at its furthest point during its orbit, 2017 OF201 is more than 1,600 astronomical units from the sun, while the closest point on its orbit is about 45 astronomical units. That means it sometimes is closer to the sun than Pluto, whose orbital distance ranges from 30 to 49 astronomical units as it travels an elliptical path around the sun. The researchers suspect that the extreme orbit of 2017 OF201 may have been caused by a long-ago close encounter with the gravitational influence of a giant planet. "We still don't know much about the solar system far away because currently it is difficult to directly see things beyond about 150 astronomical units," Cheng said. "The presence of this single object suggests that there could be another hundred or so other objects with similar orbit and size. They are just too far away to be detectable right now." The five dwarf planets recognized by the International Astronomical Union are, in order of distance from the sun: Ceres, which is the largest object in the asteroid belt between Mars and Jupiter, then Pluto, Haumea, Makemake and Eris, which all orbit beyond Neptune. The organization defines a planet and a dwarf planet differently. A planet must orbit its host star - in our case the sun - and must be mostly round and sufficiently large that its gravitational strength clears away any other objects of similar size near its orbit. A dwarf planet must orbit the sun and be mostly round but it has not cleared its orbit of other objects. Cheng said the discovery of 2017 OF201 has implications for hypotheses involving the potential existence of a ninth planet in our solar system, dubbed Planet X or Planet Nine. This is because 2017 OF201's orbit does not follow the pattern exhibited by other known trans-Neptunian objects, which tend to cluster together. Some scientists had hypothesized that such clustering was caused by the gravity of a yet-to-be discovered planet. "The existence of 2017 OF201 as an outlier to such clustering could potentially challenge this hypothesis," Cheng said. © Thomson Reuters 2025.

Possible new dwarf planet spotted near the edge of the solar system
Possible new dwarf planet spotted near the edge of the solar system

Straits Times

time30-05-2025

  • Science
  • Straits Times

Possible new dwarf planet spotted near the edge of the solar system

FILE PHOTO: Cutout images of all 19 detections of the newly identified trans-Neptunian object named 2017 OF201 are seen, from the Canada France Hawaii Telescope (CFHT) and the Dark Energy Camera (DECam) on the 4-meter Victor M. Blanco Telescope, released by the Institute for Advanced Study in Princeton, New Jersey, on May 22, 2025. Jiaxuan Li and Sihao Cheng/Handout via REUTERS Possible new dwarf planet spotted near the edge of the solar system WASHINGTON - Scientists have identified an object about 435 miles (700 km) wide inhabiting the frigid outer reaches of our solar system that might qualify as a dwarf planet, spotting it as it travels on a highly elongated orbital path around the sun. The researchers called it one of the most distant visible objects in our solar system, and said its existence indicates that a vast expanse of space beyond the outermost planet Neptune and a region called the Kuiper Belt may not be deserted, as long thought. The Kuiper Belt is populated by numerous icy bodies. Given the name 2017 OF201, the object falls into a category called trans-Neptunian objects that orbit the sun at a distance beyond that of Neptune. The object takes about 25,000 years to complete a single orbit of the sun, compared to 365 days for Earth to do so. The researchers said 2017 OF201 was identified in observations by telescopes in Chile and Hawaii spanning seven years. "It is potentially large enough to qualify as a dwarf planet. Its orbit is very wide and eccentric, which means it experienced an interesting orbital migration path in the past," said astrophysicist Sihao Cheng of the Institute for Advanced Study in Princeton, New Jersey, who led the study with collaborators Jiaxuan Li and Eritas Yang, graduate students at Princeton University. Its size is estimated to be a bit smaller than Ceres, which is the smallest of the solar system's five recognized dwarf planets and has a diameter of about 590 miles (950 km). Pluto, the largest of those dwarf planets, has a diameter of about 1,477 miles (2,377 km). The mass of 2017 OF201 is estimated to be about 20,000 times smaller than Earth's and 50 times smaller than Pluto's. "We don't know the shape yet. Unfortunately it is too far away and it is a bit difficult to resolve it with telescopes," Cheng said. "Its composition is totally unknown yet, but likely similar to other icy bodies." The discovery was announced by the Minor Planet Center of the International Astronomical Union, an international organization of astronomers, and detailed in a study posted on the open-access research site arXiv. The study has not yet been peer reviewed. Earth's orbital distance from the sun is called an astronomical unit. 2017 OF201 is currently located at a distance of 90.5 astronomical units from the sun, meaning 90.5 times as far as Earth. But at its furthest point during its orbit, 2017 OF201 is more than 1,600 astronomical units from the sun, while the closest point on its orbit is about 45 astronomical units. That means it sometimes is closer to the sun than Pluto, whose orbital distance ranges from 30 to 49 astronomical units as it travels an elliptical path around the sun. The researchers suspect that the extreme orbit of 2017 OF201 may have been caused by a long-ago close encounter with the gravitational influence of a giant planet. "We still don't know much about the solar system far away because currently it is difficult to directly see things beyond about 150 astronomical units," Cheng said. "The presence of this single object suggests that there could be another hundred or so other objects with similar orbit and size. They are just too far away to be detectable right now." The five dwarf planets recognized by the International Astronomical Union are, in order of distance from the sun: Ceres, which is the largest object in the asteroid belt between Mars and Jupiter, then Pluto, Haumea, Makemake and Eris, which all orbit beyond Neptune. The organization defines a planet and a dwarf planet differently. A planet must orbit its host star - in our case the sun - and must be mostly round and sufficiently large that its gravitational strength clears away any other objects of similar size near its orbit. A dwarf planet must orbit the sun and be mostly round but it has not cleared its orbit of other objects. Cheng said the discovery of 2017 OF201 has implications for hypotheses involving the potential existence of a ninth planet in our solar system, dubbed Planet X or Planet Nine. This is because 2017 OF201's orbit does not follow the pattern exhibited by other known trans-Neptunian objects, which tend to cluster together. Some scientists had hypothesized that such clustering was caused by the gravity of a yet-to-be discovered planet. "The existence of 2017 OF201 as an outlier to such clustering could potentially challenge this hypothesis," Cheng said. REUTERS Join ST's Telegram channel and get the latest breaking news delivered to you.

Possible new dwarf planet spotted near the edge of the solar system
Possible new dwarf planet spotted near the edge of the solar system

The Star

time30-05-2025

  • Science
  • The Star

Possible new dwarf planet spotted near the edge of the solar system

FILE PHOTO: Cutout images of all 19 detections of the newly identified trans-Neptunian object named 2017 OF201 are seen, from the Canada France Hawaii Telescope (CFHT) and the Dark Energy Camera (DECam) on the 4-meter Victor M. Blanco Telescope, released by the Institute for Advanced Study in Princeton, New Jersey, on May 22, 2025. Jiaxuan Li and Sihao Cheng/Handout via REUTERS WASHINGTON (Reuters) -Scientists have identified an object about 435 miles (700 km) wide inhabiting the frigid outer reaches of our solar system that might qualify as a dwarf planet, spotting it as it travels on a highly elongated orbital path around the sun. The researchers called it one of the most distant visible objects in our solar system, and said its existence indicates that a vast expanse of space beyond the outermost planet Neptune and a region called the Kuiper Belt may not be deserted, as long thought. The Kuiper Belt is populated by numerous icy bodies. Given the name 2017 OF201, the object falls into a category called trans-Neptunian objects that orbit the sun at a distance beyond that of Neptune. The object takes about 25,000 years to complete a single orbit of the sun, compared to 365 days for Earth to do so. The researchers said 2017 OF201 was identified in observations by telescopes in Chile and Hawaii spanning seven years. "It is potentially large enough to qualify as a dwarf planet. Its orbit is very wide and eccentric, which means it experienced an interesting orbital migration path in the past," said astrophysicist Sihao Cheng of the Institute for Advanced Study in Princeton, New Jersey, who led the study with collaborators Jiaxuan Li and Eritas Yang, graduate students at Princeton University. Its size is estimated to be a bit smaller than Ceres, which is the smallest of the solar system's five recognized dwarf planets and has a diameter of about 590 miles (950 km). Pluto, the largest of those dwarf planets, has a diameter of about 1,477 miles (2,377 km). The mass of 2017 OF201 is estimated to be about 20,000 times smaller than Earth's and 50 times smaller than Pluto's. "We don't know the shape it is too far away and it is a bit difficult to resolve it with telescopes," Cheng said. "Its composition is totally unknown yet, but likely similar to other icy bodies." The discovery was announced by the Minor Planet Center of the International Astronomical Union, an international organization of astronomers, and detailed in a study posted on the open-access research site arXiv. The study has not yet been peer reviewed. Earth's orbital distance from the sun is called an astronomical unit. 2017 OF201 is currently located at a distance of 90.5 astronomical units from the sun, meaning 90.5 times as far as Earth. But at its furthest point during its orbit, 2017 OF201 is more than 1,600 astronomical units from the sun, while the closest point on its orbit is about 45 astronomical units. That means it sometimes is closer to the sun than Pluto, whose orbital distance ranges from 30 to 49 astronomical units as it travels an elliptical path around the sun. The researchers suspect that the extreme orbit of 2017 OF201 may have been caused by a long-ago close encounter with the gravitational influence of a giant planet. "We still don't know much about the solar system far away because currently it is difficult to directly see things beyond about 150 astronomical units," Cheng said. "The presence of this single object suggests that there could be another hundred or so other objects with similar orbit and size. They are just too far away to be detectable right now." The five dwarf planets recognized by the International Astronomical Union are, in order of distance from the sun: Ceres, which is the largest object in the asteroid belt between Mars and Jupiter, then Pluto, Haumea, Makemake and Eris, which all orbit beyond Neptune. The organization defines a planet and a dwarf planet differently. A planet must orbit its host star - in our case the sun - and must be mostly round and sufficiently large that its gravitational strength clears away any other objects of similar size near its orbit. A dwarf planet must orbit the sun and be mostly round but it has not cleared its orbit of other objects. Cheng said the discovery of 2017 OF201 has implications for hypotheses involving the potential existence of a ninth planet in our solar system, dubbed Planet X or Planet Nine. This is because 2017 OF201's orbit does not follow the pattern exhibited by other known trans-Neptunian objects, which tend to cluster together. Some scientists had hypothesized that such clustering was caused by the gravity of a yet-to-be discovered planet. "The existence of 2017 OF201 as an outlier to such clustering could potentially challenge this hypothesis," Cheng said. (Reporting by Will Dunham; Editing by Daniel Wallis)

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store