Latest news with #NiO


The Hindu
10-07-2025
- Health
- The Hindu
CeNS scientists develop pocket-sized sensor to detect toxic sulfur dioxide
Scientists from the Centre for Nano and Soft Matter Sciences (CeNS) have developed a pocket-sized sensor that can help detect toxic Sulfur Dioxide (SO2), which is responsible for respiratory irritation, asthma attacks, and long-term lung damage, even at extremely low concentrations. According to the Department of Science and Technology, SO2 is a toxic air pollutant commonly released from vehicles and industrial emissions, and even minute exposure can cause serious health issues and long-term lung damage. It is said that SO2 is hard to detect before it has an adverse effect on health. 'Monitoring SO2 levels in real-time is crucial for public safety and environmental protection, yet existing technologies are often expensive, energy-intensive, or unable to detect the gas at trace levels,' it said. To overcome this, the CeNS scientists have fabricated a sensor by combining two metal oxides, Nickel Oxide (NiO) and Neodymium Nickelate (NdNiO3), through a simple synthesis process. 'While NiO acts as the receptor for the gas, NdNiO3 serves as the transducer that efficiently transmits the signal, enabling detection at concentrations as low as 320 parts per billion (ppb), far surpassing the sensitivity of many commercial sensors,' the department said. To demonstrate the capabilities of this material, the team led by S. Angappane developed a portable prototype that incorporates the sensor for real-time SO2 monitoring. The prototype features a straightforward threshold-based alert system that activates visual indicators, green for safe, yellow for warning, and red for danger, allowing easy interpretation and response, even by users without scientific expertise. Its compact and lightweight design makes it suitable for use in industrial areas, urban locations, and enclosed spaces where continuous air quality monitoring is necessary. 'With its high sensitivity, portability, and user-friendly operation, this sensor system offers a practical solution to monitor and manage SO2 pollution, supporting public health and environmental safety. This work demonstrates the potential of material science to create accessible technologies for real-world challenges,' the department added.


Time of India
26-06-2025
- Science
- Time of India
Scientists in India turn sunlight into fuel - Green hydrogen tech could power homes, cars
New Delhi: In a development that could significantly advance India's green hydrogen ambitions, scientists at the Centre for Nano and Soft Matter Sciences (CeNS), Bengaluru, have designed and tested a next-generation device that produces green hydrogen by directly splitting water molecules using sunlight and earth-abundant materials. Unlike the conventional route—where solar panels generate electricity that powers an electrolyser to split water—this new system uses a direct photoelectrochemical (PEC) process. Here, sunlight itself triggers the water-splitting reaction, eliminating the need for an external power supply or fossil-fuel-based backup. This makes the process simpler, more efficient, and potentially cheaper. The research, led by Dr Ashutosh K. Singh and his team at CeNS—an autonomous institute under the Department of Science and Technology (DST)—focuses on building a sustainable and scalable system for green hydrogen generation. The work has been published in the Journal of Materials Chemistry A by the Royal Society of Chemistry. The device and its design At the core of the innovation is a novel silicon-based photoanode featuring an n-i-p heterojunction architecture. This includes layers of n-type titanium dioxide (TiO₂), intrinsic silicon (Si), and p-type nickel oxide (NiO). The structure enhances light absorption, improves charge separation, and ensures efficient charge transport—critical for direct solar-to-hydrogen conversion. The materials were deposited using magnetron sputtering, a commercial-scale thin-film technique known for precision layering and structural stability. The device operated in alkaline electrolyte conditions and maintained structural integrity over extended hours of use. Key performance indicators The prototype achieved a surface photovoltage of 600 millivolts and a low onset potential of 0.11 volts versus the reversible hydrogen electrode (VRHE), indicating high photoelectrochemical efficiency and a low energy threshold. It ran continuously for over 10 hours under simulated solar irradiation with only a 4% drop in performance. 'The heterostructure was specifically designed to maximise PEC efficiency while maintaining long-term stability,' said Dr Singh. 'This brings us closer to building practical, fossil-fuel-free hydrogen systems.' Scalability and impact To demonstrate scalability, the team tested a 25 cm² photoanode, which performed effectively under solar water-splitting conditions. This scale-up shows promise for moving from lab to pilot applications and potentially to commercial hydrogen production. The device's design avoids rare-earth or high-cost catalysts, does not require high pressure or temperature, and is compatible with different lithium-ion battery chemistries for renewable storage integration—making it flexible and economically viable. National relevance The innovation supports India's clean energy goals under the National Green Hydrogen Mission and Aatmanirbhar Bharat. By producing green hydrogen directly from sunlight without relying on electricity or imported materials, the device contributes to energy self-reliance and carbon-neutral fuel alternatives for mobility, power generation, and industry. According to the DST, such breakthroughs can accelerate India's leadership in solar hydrogen technology and help build decentralised hydrogen hubs with localised energy ecosystems. Outlook The CeNS team is exploring further scale-up pathways, industry partnerships, and integration into existing hydrogen infrastructure. They also plan to test the device in varied climatic conditions to assess long-term field performance across India. If successful, the technology could help build round-the-clock renewable energy systems, especially in sectors where direct electrification is difficult—offering a new route to affordable and indigenous green hydrogen at scale. te long-term field applications.