Latest news with #arXiv.org


Scientific American
11-07-2025
- Science
- Scientific American
ChatGPT Is Changing the Words We Use in Conversation
After its release in late 2022, ChatGPT reached 100 million users in just two months, making it the fastest-growing consumer application in history. Since then the artificial intelligence (AI) tool has significantly affected how we learn, write, work and create. But new research shows that it's also influencing us in ways we may not be aware of—such as changing how we speak. Hiromu Yakura, a postdoctoral researcher at the Max Planck Institute for Human Development in Berlin, first noticed differences in his own vocabulary about a year after ChatGPT came out. 'I realized I was using 'delve' more,' he says. 'I wanted to see if this was happening not only to me but to other people.' Researchers had previously found that use of large language models (LLMs), such as those that power ChatGPT, was changing vocabulary choices in written communication, and Yakura and his colleagues wanted to know whether spoken communication was being affected, too. The researchers first used ChatGPT to edit millions of pages of e-mails, essays, and academic and news articles using typical prompts such as to 'polish' the text or 'improve its clarity.' Next, they extracted words that ChatGPT repeatedly added while editing, such as 'delve,' 'realm' and 'meticulous,' dubbing these 'GPT words.' The team then analyzed more than 360,000 YouTube videos and 771,000 podcast episodes from before and after ChatGPT's release to track the use of GPT words over time. They compared the GPT words with 'synthetic controls,' which were formed by mathematically weighting synonyms that weren't frequently used by the chatbot—such synonyms for 'delve,' for example, could include 'examine' and 'explore.' On supporting science journalism If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today. The team's results, posted on the preprint server last week, show a surge in GPT words in the 18 months after ChatGPT's release. The words didn't just appear in formal, scripted videos or podcast episodes; they were peppered into spontaneous conversation, too. 'The patterns that are stored in AI technology seem to be transmitting back to the human mind,' says study co-author Levin Brinkmann, also at the Max Planck Institute for Human Development. In other words, a sort of cultural feedback loop is forming between humans and AI: we train AI on written text, it parrots a statistically remixed version of that text back to us, and we pick up on its patterns and unconsciously start to mimic them. 'AI is not a special technology in terms of influencing our behavior,' Yakura says. 'But the speed and scale at which AI is being introduced is different.' It may seem harmless—if a bit comical—for people to start talking like ChatGPT. But the trend carries deeper risks. 'It's natural for humans to imitate one another, but we don't imitate everyone around us equally,' Brinkmann says. 'We're more likely to copy what someone else is doing if we perceive them as being knowledgeable or important.' As more people look to AI as a cultural authority, they may rely on and imitate it over other sources, narrowing diversity in language. This makes it critical to track and study LLMs' influence on culture, according to James Evans, a professor of sociology and data science at the University of Chicago, who was not involved in the study. 'In this moment in the evolution of LLMs, looking at word distribution is the right methodology' to understand how the technology is affecting the way we communicate, he says. 'As the models mature, these distributions are going to be harder to discriminate.' Scientists may need to look at broader linguistic trends beyond word choice, such as sentence structure and how ideas are presented. Given that ChatGPT has changed how people talk just two and a half years into its adoption, the question becomes not whether AI is going to reshape our culture, but how profoundly it will do so. 'Word frequency can shape our discourse or arguments about situations,' Yakura says. 'That carries the possibility of changing our culture.'
Yahoo
10-06-2025
- Science
- Yahoo
A Blockbuster ‘Muon Anomaly' May Have Just Disappeared
The Standard Model of particle physics—the best, most thoroughly vetted description of reality scientists have ever devised—appears to have fended off yet another threat to its reign. At least, that's one interpretation of a long-awaited experimental result announced on June 3 by physicists at the Fermi National Accelerator Laboratory, or Fermilab, in Batavia, Ill. An alternative take would be that the result—the most precise measurement ever made of the magnetic wobble of a strange subatomic particle called the muon—still remains the most significant challenge to the Standard Model's supremacy. The results have been posted on the preprint server and submitted to the journal Physical Review Letters. The muon is the electron's less stable, 200-times-heavier cousin. And like the electron and all other charged particles, it possesses an internal magnetism. When the muon's inherent magnetism clashes with an external magnetic field, the particle precesses, torquing to and fro like a wobbling, spinning top. Physicists describe the speed of this precession using a number, g, which almost a century ago was theoretically calculated to be exactly 2. Reality, however, prefers a slightly different value, arising from the wobbling muon being jostled by a surrounding sea of 'virtual' particles flitting in and out existence in the quantum vacuum. The Standard Model can be used to calculate the size of this deviation, known as g−2, by accounting for all the influences of the various known particles. But because g−2 should be sensitive to undiscovered particles and forces as well, a mismatch between a calculated deviation and an actual measurement could be a sign of new physics beyond the vaunted Standard Model's limits. [Sign up for Today in Science, a free daily newsletter] That's the hope, anyway. The trouble is that physicists have found two different ways to calculate g−2, and one of those methods, per a separate preprint paper released on May 27, now gives an answer that closely matches the measurement of the muon anomalous magnetic moment, the final result from the Muon g−2 Experiment hosted at Fermilab. So a cloud of uncertainty still hangs overhead: Has the most significant experimental deviation in particle physics been killed off by theoretical tweaks just when its best-yet measurement has arrived, or is the muon g−2 anomaly still alive and well? Vexingly, the case can't yet be conclusively closed. The Muon g−2 Collaboration announced the results on Tuesday in a packed auditorium at Fermilab, offering the audience (which included more than 1,000 people watching via livestream) a brief history of the project and an overview of its final outcome. The heart of the experiment is a giant 50-foot-diameter magnet, which acts as a racetrack for wobbling muons. In 2001, while operating at Brookhaven National Laboratory on Long Island, this ring revealed the initial sign of a tantalizing deviation. In 2013 physicists painstakingly moved the ring by truck and barge from Brookhaven to Fermilab, where it could take advantage of a more powerful muon source. The Muon g−2 Collaboration began in 2017. And in 2021 it released the first result that strengthened earlier hints of an apparent anomaly, which was bolstered further by additional results announced in 2023. This latest result is a capstone to those earlier measurements: the collaboration's final measurement gives a value of 0.001165920705 for g−2, consistent with previous results but with a remarkable precision of 127 parts per billion. That's roughly equivalent, it was noted during the June 3 announcement, to measuring the weight of a bison to the precision of a single sunflower seed. Despite that impressive feat of measurement, interpretation of this result remains an entirely different matter. The task of calculating Standard Model predictions for g−2 is so gargantuan that it brought together more than 100 theorists for a supplemental project called the Muon g−2 Theory Initiative. 'It is a community effort with the task to come up with a consensus value based on the entire available information at the time,' says Hartmut Wittig, a professor at the University of Mainz in Germany and a member of the theory initiative's steering committee. 'The answer to whether there is new physics may depend on which theory prediction you compare against. The consensus value should put an end to this ambiguity.' In 2020 the group published a theoretical calculation of g−2 that appeared to confirm the discrepancy with the measurements. The May preprint, however, brought significant change. The difference between theory and experiment is now less than one part per billion, a number both minuscule and much smaller than the accompanying uncertainties, which has led to the collaboration's consensus declaration that there is 'no tension' between the Standard Model's predictions and the measured result. To understand what brought this shift in the predictions, one has to look at one category of the virtual particles that cross the muons' path. '[Excepting gravity] three out of the four known fundamental forces contribute to g−2: electromagnetism, the weak interaction and the strong interaction,' Wittig explains. The influence of virtual photons (particles of light that are also carriers of the electromagnetic force) on muons is relatively straightforward (albeit still laborious) to calculate, for instance. In contrast, precisely determining the effects of the strong force (which usually holds the nuclei of atoms together) is much harder and is the least theoretically constrained among all g−2 calculations. Instead of dealing with virtual photons, those calculations grapple with virtual hadrons, which are clumps of fundamental particles called quarks glued together by other particles called (you might have guessed) gluons. Hadrons can interact with themselves to create tangled, precision-scuttling messes that physicists refer to as 'hadronic blobs,' enormously complicating calculations of their contributions to the wobbling of muons. Up to the 2020 result, researchers indirectly estimated this so-called hadronic vacuum polarization (HVP) contribution to the muon g−2 anomaly by experimentally measuring it for electrons. One year later, though, a new way of calculating HVP was introduced based on lattice quantum chromodynamics (lattice QCD), a computationally intensive methodology, and quickly caught on. Gilberto Colangelo, a professor at the University of Bern in Switzerland and a member of the theory initiative's steering committee, points out that, currently, 'on the lattice QCD side, there is a coherent picture emerging from different approaches. The fact that they agree on the result is a very good indication that they are doing the right thing.' While the multiple flavors of lattice QCD computations improved and their results converged, though, the experimental electron-based measurements of HVP went the opposite way. Among seven experiments seeking to constrain HVP and tighten predictive precision, only one agreed with the lattice QCD results, while there was also deviation among their own measurements. 'This is a puzzling situation for everyone,' Colangelo notes. 'People have made checks against each other. The [experiments] have been scrutinized in detail; we had sessions which lasted five hours.... Nothing wrong was found.' Eventually, the theory initiative decided to use only the lattice QCD results for the HVP factor in this year's white paper, while work on understanding the experimental results is going on. The choice moved the total predicted value for g−2 much closer to Fermilab's measurement. The Standard Model has seen all of its predictions experimentally tested to high precision, giving it the title of the most successful theory in history. Despite this, it is sometimes described as something unwanted or even failed because it does not address general open questions, such as the nature of dark matter hiding in galaxies. In the solid terms of experimental deviations from its predictions, this century has seen the rise and fall of many false alarms. If the muon g−2 anomaly goes away, however, it will also take down some associated contenders for new, paradigm-shifting physics; the absence of novel types of particles in the quantum vacuum will put strong constraints on 'beyond the Standard Model' theories. This is particularly true for the theory of supersymmetry, a favorite among theorists, some of whom have tailored a plethora of predictions explaining away the muon g−2 anomaly as a product of as-yet-unseen supersymmetric particles. Kim Siang Khaw, an associate professor at Shanghai Jiao Tong University in China and a member of Fermilab's Muon g−2, offers a perspective on what will follow. 'The theory initiative is still a work in progress,' he says. 'They may have to wait several more years to finalize. [But] every physics study is a work in progress.' Khaw also mentions that currently Fermilab is looking into repurposing the muon 'storage ring' and magnet used in the experiment, exploring more ideas that can be studied with it. Finally, on the theory front, he muses: 'I think the beauty of [the g−2 measurement] and the comparison with the theoretical calculation is that no matter if there is an anomaly or no anomaly, we learn something new about nature. Of course, the best scenario would be that we have an anomaly, and then we know where to look for this new physics. [But] if there is nothing here, then we can look somewhere else for a higher chance of discovering new physics.'


Scientific American
09-06-2025
- Science
- Scientific American
Do Wobbling Muons Point the Way to New Physics?
The Standard Model of particle physics—the best, most thoroughly vetted description of reality scientists have ever devised—appears to have fended off yet another threat to its reign. At least, that's one interpretation of a long-awaited experimental result announced on June 3 by physicists at the Fermi National Accelerator Laboratory, or Fermilab, in Batavia, Ill. An alternative take would be that the result—the most precise measurement ever made of the magnetic wobble of a strange subatomic particle called the muon —still remains the most significant challenge to the Standard Model's supremacy. The results have been posted on the preprint server and submitted to the journal Physical Review Letters. The muon is the electron's less stable, 200-times-heavier cousin. And like the electron and all other charged particles, it possesses an internal magnetism. When the muon's inherent magnetism clashes with an external magnetic field, the particle precesses, torquing to and fro like a wobbling, spinning top. Physicists describe the speed of this precession using a number, g, which almost a century ago was theoretically calculated to be exactly 2. Reality, however, prefers a slightly different value, arising from the wobbling muon being jostled by a surrounding sea of 'virtual' particles flitting in and out existence in the quantum vacuum. The Standard Model can be used to calculate the size of this deviation, known as g−2, by accounting for all the influences of the various known particles. But because g−2 should be sensitive to undiscovered particles and forces as well, a mismatch between a calculated deviation and an actual measurement could be a sign of new physics beyond the vaunted Standard Model's limits. On supporting science journalism If you're enjoying this article, consider supporting our award-winning journalism by subscribing. By purchasing a subscription you are helping to ensure the future of impactful stories about the discoveries and ideas shaping our world today. That's the hope, anyway. The trouble is that physicists have found two different ways to calculate g−2, and one of those methods, per a separate preprint paper released on May 27, now gives an answer that closely matches the measurement of the muon anomalous magnetic moment, the final result from the Muon g−2 Experiment hosted at Fermilab. So a cloud of uncertainty still hangs overhead: Has the most significant experimental deviation in particle physics been killed off by theoretical tweaks just when its best-yet measurement has arrived, or is the muon g−2 anomaly still alive and well? Vexingly, the case can't yet be conclusively closed. The Latest Word—But Not the Last The Muon g−2 Collaboration announced the results on Tuesday in a packed auditorium at Fermilab, offering the audience (which included more than 1,000 people watching via livestream) a brief history of the project and an overview of its final outcome. The heart of the experiment is a giant 50-foot-diameter magnet, which acts as a racetrack for wobbling muons. In 2001, while operating at Brookhaven National Laboratory on Long Island, this ring revealed the initial sign of a tantalizing deviation. In 2013 physicists painstakingly moved the ring by truck and barge from Brookhaven to Fermilab, where it could take advantage of a more powerful muon source. The Muon g−2 Collaboration began in 2017. And in 2021 it released the first result that strengthened earlier hints of an apparent anomaly, which was bolstered further by additional results announced in 2023. This latest result is a capstone to those earlier measurements: the collaboration's final measurement gives a value of 0.001165920705 for g−2, consistent with previous results but with a remarkable precision of 127 parts per billion. That's roughly equivalent, it was noted during the June 3 announcement, to measuring the weight of a bison to the precision of a single sunflower seed. Despite that impressive feat of measurement, interpretation of this result remains an entirely different matter. The task of calculating Standard Model predictions for g−2 is so gargantuan that it brought together more than 100 theorists for a supplemental project called the Muon g−2 Theory Initiative. 'It is a community effort with the task to come up with a consensus value based on the entire available information at the time,' says Hartmut Wittig, a professor at the University of Mainz in Germany and a member of the theory initiative's steering committee. 'The answer to whether there is new physics may depend on which theory prediction you compare against. The consensus value should put an end to this ambiguity.' In 2020 the group published a theoretical calculation of g−2 that appeared to confirm the discrepancy with the measurements. The May preprint, however, brought significant change. The difference between theory and experiment is now less than one part per billion, a number both minuscule and much smaller than the accompanying uncertainties, which has led to the collaboration's consensus declaration that there is 'no tension' between the Standard Model's predictions and the measured result. Virtual (Particle) Insanity To understand what brought this shift in the predictions, one has to look at one category of the virtual particles that cross the muons' path. '[Excepting gravity] three out of the four known fundamental forces contribute to g−2: electromagnetism, the weak interaction and the strong interaction,' Wittig explains. The influence of virtual photons (particles of light that are also carriers of the electromagnetic force) on muons is relatively straightforward (albeit still laborious) to calculate, for instance. In contrast, precisely determining the effects of the strong force (which usually holds the nuclei of atoms together) is much harder and is the least theoretically constrained among all g−2 calculations. Instead of dealing with virtual photons, those calculations grapple with virtual hadrons, which are clumps of fundamental particles called quarks glued together by other particles called (you might have guessed) gluons. Hadrons can interact with themselves to create tangled, precision-scuttling messes that physicists refer to as 'hadronic blobs,' enormously complicating calculations of their contributions to the wobbling of muons. Up to the 2020 result, researchers indirectly estimated this so-called hadronic vacuum polarization (HVP) contribution to the muon g−2 anomaly by experimentally measuring it for electrons. One year later, though, a new way of calculating HVP was introduced based on lattice quantum chromodynamics (lattice QCD), a computationally intensive methodology, and quickly caught on. Gilberto Colangelo, a professor at the University of Bern in Switzerland and a member of the theory initiative's steering committee, points out that, currently, 'on the lattice QCD side, there is a coherent picture emerging from different approaches. The fact that they agree on the result is a very good indication that they are doing the right thing.' While the multiple flavors of lattice QCD computations improved and their results converged, though, the experimental electron-based measurements of HVP went the opposite way. Among seven experiments seeking to constrain HVP and tighten predictive precision, only one agreed with the lattice QCD results, while there was also deviation among their own measurements. 'This is a puzzling situation for everyone,' Colangelo notes. 'People have made checks against each other. The [experiments] have been scrutinized in detail; we had sessions which lasted five hours.... Nothing wrong was found.' Eventually, the theory initiative decided to use only the lattice QCD results for the HVP factor in this year's white paper, while work on understanding the experimental results is going on. The choice moved the total predicted value for g−2 much closer to Fermilab's measurement. The Standard Model Still Stands Tall The Standard Model has seen all of its predictions experimentally tested to high precision, giving it the title of the most successful theory in history. Despite this, it is sometimes described as something unwanted or even failed because it does not address general open questions, such as the nature of dark matter hiding in galaxies. In the solid terms of experimental deviations from its predictions, this century has seen the rise and fall of many false alarms. If the muon g−2 anomaly goes away, however, it will also take down some associated contenders for new, paradigm-shifting physics; the absence of novel types of particles in the quantum vacuum will put strong constraints on 'beyond the Standard Model' theories. This is particularly true for the theory of supersymmetry, a favorite among theorists, some of whom have tailored a plethora of predictions explaining away the muon g−2 anomaly as a product of as-yet-unseen supersymmetric particles. Kim Siang Khaw, an associate professor at Shanghai Jiao Tong University in China and a member of Fermilab's Muon g−2, offers a perspective on what will follow. 'The theory initiative is still a work in progress,' he says. 'They may have to wait several more years to finalize. [But] every physics study is a work in progress.' Khaw also mentions that currently Fermilab is looking into repurposing the muon 'storage ring' and magnet used in the experiment, exploring more ideas that can be studied with it. Finally, on the theory front, he muses: 'I think the beauty of [the g−2 measurement] and the comparison with the theoretical calculation is that no matter if there is an anomaly or no anomaly, we learn something new about nature. Of course, the best scenario would be that we have an anomaly, and then we know where to look for this new physics. [But] if there is nothing here, then we can look somewhere else for a higher chance of discovering new physics.'


Sharjah 24
08-06-2025
- Science
- Sharjah 24
Scientists rule out 'Planet X' in most suspected sky regions
Extensive survey with PAN-STARRS1 Telescope The findings come from a comprehensive survey of the outer solar system using the PAN-STARRS1 telescope in Hawaii. The results were published on the preprint server Broad search yields hundreds of small celestial bodies Led by Matthew Holman of the Harvard-Smithsonian Center for Astrophysics, the team conducted one of the most extensive searches to date for distant planetary objects. They identified 692 small celestial bodies, including 23 dwarf planets and 109 newly discovered objects. No trace of Planet X found Despite the wide-ranging search, no sign of a large ninth planet was detected. However, the survey significantly narrowed the potential location where Planet X could still exist. Innovative detection method The team developed a specialised algorithm to analyze images from 2009 to 2017. The PAN-STARRS1 telescope, typically used to detect fast-moving objects like asteroids, was repurposed to identify slow-moving bodies far from the Sun—those located at 80 AU or more. By cross-referencing known asteroid paths, the algorithm tracked motion in the distant solar system, but found no evidence of Planet X. Remaining search area near Milky Way plane The only region left unexamined is a narrow area near the plane of the Milky Way, which PAN-STARRS1 has not yet surveyed in detail due to the density of stars and dust. This region remains the final candidate for Planet X's possible location. Background: The Planet X hypothesis Interest in Planet X surged in 2016 after scientists Konstantin Batygin and Michael Brown proposed its existence. They suggested a Neptune-sized planet orbiting far beyond Pluto, at distances of at least 670 AU from the Sun. Scientific debate continues Despite multiple searches, no direct observation of Planet X has been made. This has led some astronomers to question its existence and investigate alternative explanations for the unusual gravitational patterns in the outer solar system.
Yahoo
06-06-2025
- Science
- Yahoo
Mathematicians Solve Multidimensional Shape-Slicing Dilemma
In 1986 Belgian mathematician Jean Bourgain posed a seemingly simple question that continued to puzzle researchers for decades. No matter how you deform a convex shape—consider shaping a ball of clay into a watermelon, a football or a long noodle—will you always be able to slice a cross section bigger than a certain size? A paper by Bo'az Klartag of the Weizmann Institute of Science in Rehovot, Israel, and Joseph Lehec of the University of Poitiers in France, posted to the preprint site has finally provided a definitive answer: yes. Bourgain's slicing problem asks whether every convex shape in n dimensions has a 'slice' such that the cross section is bigger than some fixed value. For three-dimensional objects, this is like asking whether an avocado of a given size, no matter the exact shape, can always be split into two halves with each side revealing at least some sizable slice. Bourgain, a titan of mathematics, is said to have spent more time on this problem than any other; although it may seem deceptively easy to resolve in the physical world's two or three dimensions, it quickly balloons in difficulty when we consider four or five. This added complexity makes determining anything in n-dimensional space seem impossible. 'If you believe in this so-called curse of dimensionality, you might just give up,' Klartag says. Fortunately, he adds, he and Lehec 'belong to a different school of thought.' The pair's breakthrough builds on recent progress by mathematician Qingyang Guan of the Chinese Academy of Sciences, who approached the problem with a technique based on physics rather than geometry. Specifically, Guan showed that modeling how heat diffuses out of a convex shape can reveal hidden geometric structures. Researchers could calculate filling any convex shape with warm gas and carefully observe the heat's dissipation according to physical laws. Guan's key insight—a precise limit on how rapidly the rate of dissipation changes during this heating process—proved to be just what Klartag and Lehec needed. 'Guan's bound tied together all the other key facts' known for the problem, says mathematician Beatrice-Helen Vritsiou of the University of Alberta. [Sign up for Today in Science, a free daily newsletter] The result let Klartag and Lehec resolve the problem in only a few days. Klartag notes that 'it was lucky because we knew [Guan's result] was exactly one of the things we needed' to connect several seemingly disparate approaches to the puzzle. With this final piece in place, the geometry of convex bodies in high dimensions is now a little less mysterious—although, as always in mathematics, each new slice reveals more questions to explore.