Latest news with #earlyuniverse
Yahoo
29-06-2025
- Science
- Yahoo
Farthest 'mini-halo' ever detected could improve our understanding of the early universe
When you buy through links on our articles, Future and its syndication partners may earn a commission. While analyzing a 10 billion-year-old radio signal, astronomers discovered a "mini-halo" — a cloud of energetic particles — around a far-off cluster of galaxies. The unexpected findings could further our understanding of the early universe. This mini-halo is the most distant one ever detected, located twice as far from Earth as the next-farthest mini-halo. It is also massive, spanning more than 15 times the width of the Milky Way, and contains strong magnetic fields. The findings have been accepted for publication in The Astrophysical Journal Letters and are available on the preprint server arXiv. "It's astonishing to find such a strong radio signal at this distance," Roland Timmerman, a radio astronomer at Durham University who co-led the study, said in a statement. Mini-halos are faint groups of charged particles that emit radio and X-ray waves in the vacuum of space between galaxies. They have been detected around galaxy clusters in the local universe, but never as far back in space and time as the one reported in the new study. There are two theories that could explain the collection of particles, according to the researchers. One possible cause is the supermassive black holes at the centers of large galaxies within the distant cluster. These black holes can shoot high-energy particles into space, but it's not clear how the particles would travel away from a powerful black hole and into a mini-halo without losing significant energy. Another possible means of creation is the collision of charged particles within the plasma in a galaxy cluster. When these high-energy particles smash into each other, often at close to the speed of light, they can break apart into the kinds of particles that can be seen from Earth. Related: James Webb telescope unveils largest-ever map of the universe, spanning over 13 billion years Observations of the mini-halo come from light so old that it changes the picture of galaxy formation, proving that these charged particles have surrounded galaxies for billions of years longer than was known. "Our discovery implies that clusters of galaxies have been immersed in such particles since their formation," Julie Hlavacek-Larrondo, an astrophysicist at the University of Montréal who also co-led the research, told Live Science in an email. It's "something which we were not expecting at first." Scientists can now study the origin of these mini-halos to determine whether black holes or particle collisions are responsible for them. These particles also have a hand in other astrophysical processes, like star formation. They can affect the energy and pressure of the gas within a galaxy or couple with magnetic fields in unique ways. These processes can keep clouds of gas from collapsing, in turn altering how stars form in the gas. RELATED STORIES —'Totally unexpected' galaxy discovered by James Webb telescope defies our understanding of the early universe —Ghostly galaxy without dark matter baffles astronomers —Astronomers discover giant 'bridge' in space that could finally solve a violent galactic mystery "We are still learning a lot about these structures, so unfortunately the more quantitative picture is still very much in development," Timmerman told Live Science in an email. New radio telescopes, like the SKA Observatory, are in development to help astronomers detect even fainter signals and learn about mini-halos. "We are just scratching the surface of how energetic the early Universe really was," Hlavacek-Larrondo said.


Fox News
28-06-2025
- Science
- Fox News
Scientists discover ancient radio signals from distant galaxy cluster
Astronomers studying a distant galaxy cluster stumbled upon ancient radio signals that might hold clues to the formation of the early universe. While studying the distant galaxy cluster known as SpARCS1049, astronomers detected faint mysterious radio waves, according to a study published in The Astrophysical Journal Letters and available on the pre-print server Xrxiv. The discovered radio waves, which took 10 billion years to reach Earth, originated from a vast region of space filled with high-energy particles and magnetic fields. These vast clouds of high-energy particles are known as a mini-halo. A mini-halo has never been detected this deep into space before, according to the study. Mini-halos are described in the study as faint groups of charged particles. These groups are known to emit both radio and X-ray waves. Mini-halos are typically found in clusters between galaxies. Roland Timmerman of the Institute for Computational Cosmology of Durham University and co-author of the study said in a statement in how these particles are important for the creation of our universe. "It's astonishing to find such a strong radio signal at this distance," Timmerman said. "It means these energetic particles and the processes creating them have been shaping galaxy clusters for nearly the entire history of the universe." The astronomers analyzed data from the Low Frequency Array (LOFAR) radio telescope. The LOFAR is made up of 100,000 small antennas across eight European countries, according to the study. The team of astronomers believes there are two causes for the makeup of these mini-halos. According to the study, the first explanation is supermassive black holes found at the heart of galaxies. These black holes can release high-energy particles into space. The astronomers are perplexed as to how these particles would escape such a powerful black hole to create these clusters. The second explanation, according to the study, is cosmic particle collisions. These cosmic particle collisions occur when charged particles filled with hot plasma collide at near-light speeds. These collisions smash apart, allowing the high-energy particles to be observed from Earth. According to the study, astronomers now believe that this discovery suggests that either black holes or particle collisions have been energizing galaxies earlier than previously believed. New telescopes being developed like the Square Kilometer Array will eventually let astronomers detect even more faint signals. Julie Hlavacek-Larrondo from the University of Montreal and co-lead author of the study said in a statement she believes this is just the beginning to the wonders of space. "We are just scratching the surface of how energetic the early universe really was," Hlavacek-Larrondo said in the statement. "This discovery gives us a new window into how galaxy clusters grow and evolve, driven by both black holes and high-energy particle physics."
Yahoo
22-06-2025
- Science
- Yahoo
A radio signal from the beginning of the universe could reveal how everything began
A radio signal from the early universe could allow us to understand how everything that surrounds us began. The signal – known as the 21-centimetre signal – could finally let us understand how the first stars and galaxies switched on, and brought the universe from darkness to light. 'This is a unique opportunity to learn how the universe's first light emerged from the darkness,' said co-author Anastasia Fialkov from Cambridge University, in a statement. 'The transition from a cold, dark universe to one filled with stars is a story we're only beginning to understand.' The signal comes to us from more than 13 billion years ago, just a hundred million years after the Big Bang. The faint glow is created by hydrogen atoms that fill up the space between regions of space where stars are being formed. Scientists now believe they will be able to use the nature of that signal to better understand the early universe. They will do that with a radio antenna called REACH – the Radio Experiment for the Analysis of Cosmic Hydrogen – which will try and capture radio signals to reveal data about the beginnings of the universe. To better understand how that project might work, researchers created a model that predicted how REACH as well as another project called the Square Kilometre Array will be able to provide information about the masses and other details of the first stars. 'We are the first group to consistently model the dependence of the 21-centimetre signal of the masses of the first stars, including the impact of ultraviolet starlight and X-ray emissions from X-ray binaries produced when the first stars die,' said Professor Fialkov. 'These insights are derived from simulations that integrate the primordial conditions of the universe, such as the hydrogen-helium composition produced by the Big Bang.' 'The predictions we are reporting have huge implications for our understanding of the nature of the very first stars in the Universe,' said co-author Eloy de Lera Acedo, Principal Investigator of the REACH telescope. 'We show evidence that our radio telescopes can tell us details about the mass of those first stars and how these early lights may have been very different from today's stars. 'Radio telescopes like REACH are promising to unlock the mysteries of the infant Universe, and these predictions are essential to guide the radio observations we are doing from the Karoo, in South Africa.' The work is described in a new paper, 'Determination of the mass distribution of the first stars from the 21-cm signal', published in the journal Nature Astronomy.


The Independent
20-06-2025
- Science
- The Independent
Space signal could reveal how universe turned from dark to light
A radio signal from the early universe, known as the 21-centimetre signal, offers a unique opportunity to understand how the first stars and galaxies emerged. This faint glow originates from over 13 billion years ago, approximately 100 million years after the Big Bang, and is created by hydrogen atoms. Scientists plan to use a radio antenna called REACH (Radio Experiment for the Analysis of Cosmic Hydrogen) to capture these signals and gather data about the universe's beginnings. Researchers developed a model predicting how REACH and the Square Kilometre Array can provide information about the masses and other details of the first stars. The work, published in Nature Astronomy, suggests that radio telescopes like REACH can reveal crucial details about the nature and mass of these early stars, which may have differed from today's stars.


The Independent
20-06-2025
- Science
- The Independent
A radio signal from the beginning of the universe could reveal how everything began
A radio signal from the early universe could allow us to understand how everything that surrounds us began. The signal – known as the 21-centimetre signal – could finally let us understand how the first stars and galaxies switched on, and brought the universe from darkness to light. 'This is a unique opportunity to learn how the universe's first light emerged from the darkness,' said co-author Anastasia Fialkov from Cambridge University, in a statement. 'The transition from a cold, dark universe to one filled with stars is a story we're only beginning to understand.' The signal comes to us from more than 13 billion years ago, just a hundred million years after the Big Bang. The faint glow is created by hydrogen atoms that fill up the space between regions of space where stars are being formed.