Latest news with #exoplanet
Yahoo
12 hours ago
- Science
- Yahoo
The James Webb Space Telescope has photographed its first undiscovered planet
When you buy through links on our articles, Future and its syndication partners may earn a commission. Photographers often can't get enough light – but by blocking out some light, the largest telescope launched into space has photographed what could be its first previously undiscovered planet. NASA's James Webb Space Telescope has photographed what researchers believe is a new exoplanet, dubbed TWA 7 b. While the new exoplanet is estimated to be around the mass of Saturn, the TWA 7 b is believed to be the lightest planet ever seen using the Mid-Infrared Instrument imaging. The exoplanet orbits the star TWA 7, around 34 light-years from Earth. One of the challenges in locating new, distant planets is that the stars they orbit typically give off so much light that the planet's dimmer light is lost in the star's brightness. The James Webb Space Telescope compensates for this using the coronagraph technique. A coronagraph is a technique that requires blocking off light from a star in order to see objects otherwise lost in the star's brightness. By blocking off the star's brightness – the black circular gap marked by the star icon in the photograph above – scientists were able to see evidence of TWA 7 b. The new exoplanet hasn't yet been confirmed – NASA notes that there's a small chance that the object in the photograph is a background galaxy rather than an exoplanet. But as scientists continue to research the find, the evidence points to the shape being the James Webb Telescope's first discovery of a previously unknown planet. The telescope's ability to photograph the mid-infrared has enabled the James Webb to aid scientists in studying distant but known planets for the last three years. Now, the technology inside the telescope has allowed for the discovery of what appears to be an undiscovered planet. The James Webb Telescope – the largest ever to launch into space – is designed to detect light outside what humans can see with the naked eye. The near and mid-infrared capabilities of the telescope are helping scientists explore what NASA describes as otherwise hidden regions of space. Infrared technology is key to photographing distant space objects through clouds of dust, as well as low-energy stars and planets like brown dwarfs and young protostars. The infrared technology inside the James Webb has allowed the TWA 7 b to be detected through the three dust rings that surround that system's star. The exoplanet is positioned in a gap in the dust disks, leading scientists to theorize that the planet could be what's shaping the dust structures. While ongoing work is needed to confirm the object as a planet and record additional observations, the photograph also illustrates Webb's potential to find previously unseen planets. The research was published earlier this week in Nature. Browse the best lenses for astrophotography or find inspiration in these star photography tips.
Yahoo
12 hours ago
- Science
- Yahoo
Scientists discover rare planet at the edge of the Milky Way using space-time phenomenon predicted by Einstein
When you buy through links on our articles, Future and its syndication partners may earn a commission. Astronomers have used a space-time phenomenon first predicted by Albert Einstein to discover a rare planet hiding at the edge of our galaxy. The exoplanet, dubbed AT2021uey b, is a Jupiter-size gas giant located roughly 3,200 light-years from Earth. Orbiting a small, cool M dwarf star once every 4,170 days, the planet's location is remarkable — it is only the third planet in the entire history of space observation to be discovered so far away from our galaxy's dense center. Yet perhaps more exceptional than the planet's location is the method used to discover it. The effect, known as microlensing, occurs when the light of a host star is magnified by the warping of space-time due to a planet's gravity. The researchers published their findings May 7 in the journal Astronomy & Astrophysics. "This kind of work requires a lot of expertise, patience, and, frankly, a bit of luck," study co-author Marius Maskoliūnas, an astronomer at Vilnius University in Lithuania, said in a statement. "You have to wait for a long time for the source star and the lensing object to align and then check an enormous amount of data. Ninety percent of observed stars pulsate for various other reasons, and only a minority of cases show the microlensing effect." Nearly 6,000 alien worlds beyond our solar system have been discovered since the first exoplanet was detected in 1992. The two most common detection methods, called transmit photometry and radial velocity, detect planets through the dimming of host stars as they pass in front of them, or from the wobble that the planets' gravitational tugs impart upon them. A rarer method, known as microlensing, is derived from Einstein's theory of general relativity and is produced by massive objects as they warp the fabric of the universe, called space-time. Gravity, Einstein discovered, isn't produced by an unseen force but by space-time curving and distorting in the presence of matter and energy. Related: James Webb telescope discovers its first planet — a Saturn-size 'shepherd' still glowing red hot from its formation This curved space, in turn, determines how energy and matter move through it. Even though light travels in a straight line, light traveling through a curved region of space-time also travels in a curve. This means that when a planet passes in front of its host star, its gravity acts as a lens — magnifying the star's light and causing its brightness to spike. "What fascinates me about this method is that it can detect those invisible bodies," Maskoliūnas said, essentially by measuring the bodies' shadows. "Imagine a bird flying past you. You don't see the bird itself and don't know what color it is — only its shadow. But from it, you can, with some level of probability, determine whether it was a sparrow or a swan and at what distance from us. It's an incredibly intriguing process." RELATED STORIES —James Webb telescope zooms in on bizarre 'Einstein ring' caused by bending of the universe —James Webb telescope uncovers 1st-ever 'Einstein zig-zag' hiding in plain sight — and it could help save cosmology —Stunning 'Einstein engagement ring' from the early universe is one of the oldest ever discovered AT2021uey b's cosmic shadow was first spotted in 2021 in data taken by the European Space Agency's Gaia telescope, revealing its presence by a momentary spike in the brightness of its host star. The astronomers then took detailed follow-up observations using Vilnius's Molėtai Astronomical Observatory, from which they calculated its source as a planet 1.3 times the mass of Jupiter. Its host star burns at about half the temperature of our own, and the gas giant sits four times farther than Earth's distance from the sun. According to the researchers, the planet's discovery so far from the Milky Way's central bulge, in a region that is comparatively sparse in heavier elements needed to form planets, offers a fresh hint of the unlikely places where planets can be found. "When the first planet around a sun-like star was discovered, there was a great surprise that this Jupiter-type planet was so close to its star," Edita Stonkutė, another Vilnius University astronomer and leader of the microlensing project that found the planet, said in the statement. "As data accumulated, we learned that many types of planetary systems are completely unlike ours — the solar system. We've had to rethink planetary formation models more than once."


BBC News
a day ago
- Science
- BBC News
James Webb space telescope spots its first exoplanet TWA 7b
The James Webb Space Telescope been has been sending incredible images of space back to Earth and helping scientists learn more about the universe since its launch in now there is a new discovery to add to the telescope, which can see further into the universe than anything before it, has just spotted its first exoplanet. TWA 7b, is located around a hundred light years from Earth and is thought to be a relatively young 6.4 million years old. What did the James Webb telescope spot? Until now, the James Webb space telescope has mostly been used to learn more about already known exoplanets, rather than look for new for the first time, the powerful telescope has discovered an exoplanet not previously known to international team, led by Dr Anne-Marie Lagrange, researcher at the Paris Observatory and Grenoble Alpes University in France, decided to point the telescope Webb at a star called TWA 7 - around a hundred light years from hi-tech instruments on board, the space telescope was able to block out light from stars, helping it to observe nearby fainter helped it spot the exoplanet TWA 7b, a young gas giant planet roughly the size of Saturn - our solar system's second-largest planet - orbiting a star about 110 light-years from Earth in the constellation a statement, France's CNRS research centre said that the discovery "represents a first for the telescope."Dr. Anne-Marie Lagrange explained: "Webb opens a new window - in terms of mass and the distance of a planet to the star - of exoplanets that had not been accessible to observations so far. "This is important to explore the diversity of exoplanetary systems and understand how they form and evolve," she are now looking to find out more about TWA 7b and hope that the telescope could help them discover "Earth-like planets" one day. What is an exoplanet? Exoplanets are planets that orbit a different star than our Sun - in a different solar system to though scientists thought for a long time that they must exist, it was only in 1992 that the first exoplanet was work to find more exoplanets has produced some exciting results 2015, scientists discovered the exoplanet Kepler-452b, which was described as 'Earth's cousin' because of its close similarities to our experts say exoplanets are really important because they raise the possibility that life could exist in other solar systems.

The National
a day ago
- Science
- The National
James Webb Space Telescope's first 'alien world' discovery unlocks new era of planet-hunting
Scientists have unveiled groundbreaking direct images of a planet outside of our own solar system, taken by the James Webb Space Telescope. It is the first exoplanet discovered by the telescope, proving it can detect lighter and more elusive worlds orbiting distant stars. The planet, named TWA 7b, is situated near a young star about 34 lightyears away, in the constellation Hydra. It is the lightest exoplanet ever seen through direct imaging, with a mass similar to Saturn and about one-third that of Jupiter, as scientists are now able to study smaller, cooler planets that are more difficult to detect. The findings were published in the Nature science journal on Wednesday. Dr Anne-Marie Lagrange, a researcher with the French National Centre for Scientific Research (CNRS), led the study by an international team. 'Our observations reveal a strong candidate for a planet shaping the structure of the TWA 7 debris disc, and its position is exactly where we expected to find a planet of this mass,' she said. How the planet was found While thousands of exoplanets have been found over the past three decades, most have been detected through indirect methods. These included measuring the dimming of a star as a planet passes in front of it or by watching for tiny movements in a star caused by the gravitational pull of an orbiting planet. Only some have ever been directly imaged, and those have typically been enormous gas giants. TWA 7b was spotted using a powerful coronagraph installed on Webb's Mid-Infrared Instrument (Miri), a telescope attachment developed the CNRS and the French Alternative Energies and Atomic Energy Commission. The coronagraph acted like a solar eclipse, blocking out the light of a star so that the much fainter objects orbiting nearby could be seen. This technique helped astronomers spot a faint source of light hidden inside one of the thin dust rings surrounding the star TWA 7. After ruling out objects such as background galaxies or image glitches, scientists realised the signal was coming from a planet, one that had never been seen before. Computer simulations showed that the planet was placed exactly where there is a strange gap in the star's narrow dust ring, which meant strong evidence that its gravity is shaping the ring's structure. Building on past space telescope discoveries Since the telescope's science operations started in 2022, it has helped scientists make several discoveries. These included helping to confirm the chemical composition of atmospheres of other planets and extreme weather patterns on gas giants. JWST's predecessor, the Hubble Space Telescope, also made valuable discoveries in the early era of direct imaging. It captured the first visible-light image of an exoplanetary system in 2008, however, it lacked the sensitivity to see planets smaller than Jupiter. Now, the James Webb Space Telescope is now offering more advanced techniques. 'This observatory enables us to capture images of planets with masses similar to those in the solar system, which represents an exciting step forward in our understanding of planetary systems, including our own,' said Mathilde Malin, co-author of the study. What comes next The team behind the discovery thinks Webb could soon be able to spot planets with just 10 per cent the mass of Jupiter, getting close to the size of Neptune and 'super-Earths', planets outside the solar system that are larger than Earth but smaller than icy planets like Neptune and Uranus. TWA 7 b also gives scientists a roadmap for how future space and ground-based telescopes that might detect even smaller, more Earth-like planets.


CBS News
2 days ago
- Science
- CBS News
NASA's James Webb Space Telescope captures images of what's believed to be newly discovered exoplanet
NASA's James Webb Space Telescope has captured evidence of a planet beyond the solar system for the first time since its launch in 2021. The exoplanet, a planet beyond our solar system, has been dubbed TWA 7b and orbits the young nearby star TWA 7, NASA said. Scientists believe the exoplanet is around the mass of Saturn and is about 50 times the distance of Earth from the Sun, according to NASA. Usually, planets of this size outside of our solar system are difficult to detect, but scientists used a technique called high-contrast imaging to detect the exoplanet, NASA said. Images of the exoplanet were taken using a coronagraph, which allows researchers to suppress the bright glare of a star to reveal faint nearby objects. Astronomers using the James Webb Space Telescope have captured compelling evidence of a planet with a mass similar to Saturn orbiting the young nearby star TWA 7. Space Telescope Science Institute Scientists said there was a very small chance the images could show a background galaxy, but evidence "strongly points to the source being a previously undiscovered planet." "Our observations reveal a strong candidate for a planet shaping the structure of the TWA 7 debris disk, and its position is exactly where we expected to find a planet of this mass," said lead researcher Anne-Marie Lagrange. The exoplanet could be a young and cold planet with a mass around 0.3 times that of Jupiter and a temperature near 120 degrees Fahrenheit, according to initial analysis from researchers. The first time scientists discovered an exoplanet was back in 1992. Astronomers have discovered nearly 6,000 exoplanets since then, but none of them are known to be habitable.