logo
#

Latest news with #proteins

Study Reveals Turning Point When Your Body's Aging Accelerates
Study Reveals Turning Point When Your Body's Aging Accelerates

Yahoo

time5 hours ago

  • Health
  • Yahoo

Study Reveals Turning Point When Your Body's Aging Accelerates

The passage of time may be linear, but the course of human aging is not. Rather than a gradual transition, your life staggers and lurches through the rapid growth of childhood, the plateau of early adulthood, to an acceleration in aging as the decades progress. Now, a new study has identified a turning point at which that acceleration typically takes place: at around age 50. After this time, the trajectory at which your tissues and organs age is steeper than the decades preceding, according to a study of proteins in human bodies across a wide range of adult ages – and your veins are among the fastest to decline. "Based on aging-associated protein changes, we developed tissue-specific proteomic age clocks and characterized organ-level aging trajectories. Temporal analysis revealed an aging inflection around age 50, with blood vessels being a tissue that ages early and is markedly susceptible to aging," writes a team led by scientists from the Chinese Academy of Sciences. "Together, our findings lay the groundwork for a systems-level understanding of human aging through the lens of proteins." Related: Study Finds Humans Age Faster at 2 Sharp Peaks – Here's When Humans have a remarkably long lifespan compared to most other mammals, but it comes at some costs. One is a decline in organ function, leading to a rise in risk of chronic disease as the years mount up. We don't have a very good understanding of the patterns of aging in individual organs, so the researchers investigated how proteins in different tissues change over time. They collected tissue samples from a total of 76 organ donors between the ages of 14 and 68 who had died of accidental traumatic brain injury. These samples covered seven of the body's systems: cardiovascular (heart and aorta), digestive (liver, pancreas, and intestine), immune (spleen and lymph node), endocrine (adrenal gland and white adipose), respiratory (lung), integumentary (skin), and musculoskeletal (muscle). They also took blood samples. The team constructed a catalogue of the proteins found in these systems, taking careful note of how their levels changed as the ages of the donors increased. The researchers compared their findings to a database of diseases and their associated genes, and found that expressions of 48 disease-related proteins increased with age. These included cardiovascular conditions, tissue fibrosis, fatty liver disease, and liver-related tumors. The most stark changes occurred between the ages of 45 and 55, the researchers found. It's at this point that many tissues undergo substantial proteomic remodeling, with the most marked changes occurring in the aorta – demonstrating a strong susceptibility to aging. The pancreas and spleen also showed sustained change. To test their findings, the researchers isolated a protein associated with aging in the aortas of mice, and injected it into young mice to observe the results. Test animals treated with the protein had reduced physical performance, decreased grip strength, lower endurance, and lower balance and coordination compared to non-treated mice. They also had prominent markers of vascular aging. Previous work by other researchers showed another two peaks in aging, at around 44, and again at around 60. The new result suggests that human aging is a complicated, step-wise process involving different systems. Working out how aging is going to affect specific parts of the body at specific times could help develop medical interventions to make the process easier. "Our study is poised to construct a comprehensive multi-tissue proteomic atlas spanning 50 years of the entire human aging process, elucidating the mechanisms behind proteostasis imbalance in aged organs and revealing both universal and tissue-specific aging patterns," the researchers write. "These insights may facilitate the development of targeted interventions for aging and age-related diseases, paving the way to improve the health of older adults." The research has been published in Cell. Related News Putting Makeup on Children Could Risk Their Health, Study Shows New Kind of Dental Floss Could Replace Vaccine Needles, Study Finds World's Most Common Pain Relief Drug May Induce Risky Behavior, Research Suggests Solve the daily Crossword

Ancient proteins found in fossils up to 24 million years old
Ancient proteins found in fossils up to 24 million years old

Reuters

time10-07-2025

  • Science
  • Reuters

Ancient proteins found in fossils up to 24 million years old

WASHINGTON, July 9 (Reuters) - Scientists in recent years have made progress in finding ancient DNA in fossils, gaining insight into organisms that lived long ago. But the oldest DNA obtained so far dates back about two million years. Proteins, a cell's molecular machinery, also offer valuable information and have the virtue of surviving much longer, as new research shows. Scientists have now extracted and sequenced proteins from dental fossils of extinct rhinoceroses, elephants and hippopotamuses, including from a rhino tooth 21-24 million years old. Separate research teams found protein fragments in fossils from vastly different environments - the frigid High Arctic of Canada and a scorching rift valley in Kenya. "Together, these complementary projects demonstrate that proteins - fundamental building blocks of living organisms that preserve information about evolutionary history - can be found in ancient fossils the world over," said Harvard University evolutionary biologist Daniel Green, lead author of the Kenya fossils study published in the journal Nature, opens new tab. This opens a new frontier for probing the deep evolutionary past, including the human lineage and perhaps even dinosaurs. "Ancient proteins can tell us about an organism's evolutionary history by providing molecular data from specimens too old for DNA preservation. This allows researchers to clarify evolutionary relationships across the tree of life, even for species that went extinct millions of years ago," said Ryan Sinclair Paterson, a postdoctoral researcher at the University of Copenhagen's Globe Institute and lead author of the Canada fossil study in Nature, opens new tab. DNA and proteins are fragile and degrade over time, but proteins are more resilient. The oldest-known DNA is from organisms that lived in Greenland two million years ago. Until now, the oldest-known proteins preserved well enough to offer insight on evolutionary relationships were about four million years old, from the Canadian Arctic. The new research pushes the boundaries of ancient protein research, a field called paleoproteomics, back by millions of years. Proteins were obtained from teeth of five rhino, elephant and hippo species that lived 1.5–18 million years ago in Kenya's Turkana region. The proteins showed the ties between the ancient animals and their modern-day relatives. Proteins also were extracted from a fragment of a tooth of an extinct rhino unearthed at a site called Haughton Crater in Nunavut, Canada's northernmost territory, that was up to 24 million years old. They showed how this species fit into the rhino family tree. Haughton Crater's cold and dry conditions were considered ideal for preserving proteins. Preservation in the hot climate of Turkana was more unexpected. DNA and proteins, fundamental molecules in biology, possess distinct structures and functions. Deoxyribonucleic acid is the blueprint for life, bearing instructions for an organism's development, growth and reproduction. Proteins perform numerous functions based on instructions from DNA. "Proteins are encoded by our genetic code, DNA, so protein sequences reveal information about relatedness between different individuals, and biological sex, among other things," Green said. The scientists extracted peptides - chains of organic compounds called amino acids that combine to form proteins - found inside tooth enamel. "Some proteins help build teeth, the hardest and most durable structures in animal bodies," Green added. "Enamel is mostly rock: a mineral called hydroxyapatite. But its formation is biologically mediated by proteins that guide both shape and hardness over time. Because these proteins become entombed deep within enamel mineral, we have some reason to expect that protein fragments can be preserved over many millions of years," Green said. Homo sapiens appeared about 300,000 years ago. Ancient proteins previously have been found in the teeth of some extinct species in the human evolutionary lineage, called hominins. The Turkana region has yielded important hominin fossils. "Hominins have evolutionary origins and/or diversification in the area where our samples derive, so our results have promise in future exploration of the enamel proteome (set of proteins) of our evolutionary ancestors from the Turkana Basin of Kenya," said study co-author Timothy Cleland, a physical scientist at the Smithsonian Museum Conservation Institute in Maryland. The proteins studied came from large-bodied species dating to the age of mammals that followed the demise of the dinosaurs that had dominated during the preceding Mesozoic era, which ended 66 million years ago. Green said that in the new research the number of detectable proteins declined in progressively older fossils. But Green did not rule out finding proteins dating to the age of dinosaurs, saying, "Newer and better methods for extracting and detecting ancient proteins could, perhaps, push paleoproteomics into the Mesozoic."

Ancient proteins found in fossils up to 24 million years old
Ancient proteins found in fossils up to 24 million years old

Yahoo

time09-07-2025

  • Science
  • Yahoo

Ancient proteins found in fossils up to 24 million years old

By Will Dunham WASHINGTON (Reuters) -Scientists in recent years have made progress in finding ancient DNA in fossils, gaining insight into organisms that lived long ago. But the oldest DNA obtained so far dates back about two million years. Proteins, a cell's molecular machinery, also offer valuable information and have the virtue of surviving much longer, as new research shows. Scientists have now extracted and sequenced proteins from dental fossils of extinct rhinoceroses, elephants and hippopotamuses, including from a rhino tooth 21-24 million years old. Separate research teams found protein fragments in fossils from vastly different environments - the frigid High Arctic of Canada and a scorching rift valley in Kenya. "Together, these complementary projects demonstrate that proteins - fundamental building blocks of living organisms that preserve information about evolutionary history - can be found in ancient fossils the world over," said Harvard University evolutionary biologist Daniel Green, lead author of the Kenya fossils study published in the journal Nature. This opens a new frontier for probing the deep evolutionary past, including the human lineage and perhaps even dinosaurs. "Ancient proteins can tell us about an organism's evolutionary history by providing molecular data from specimens too old for DNA preservation. This allows researchers to clarify evolutionary relationships across the tree of life, even for species that went extinct millions of years ago," said Ryan Sinclair Paterson, a postdoctoral researcher at the University of Copenhagen's Globe Institute and lead author of the Canada fossil study in Nature. DNA and proteins are fragile and degrade over time, but proteins are more resilient. The oldest-known DNA is from organisms that lived in Greenland two million years ago. Until now, the oldest-known proteins preserved well enough to offer insight on evolutionary relationships were about four million years old, from the Canadian Arctic. The new research pushes the boundaries of ancient protein research, a field called paleoproteomics, back by millions of years. Proteins were obtained from teeth of five rhino, elephant and hippo species that lived 1.5–18 million years ago in Kenya's Turkana region. The proteins showed the ties between the ancient animals and their modern-day relatives. Proteins also were extracted from a fragment of a tooth of an extinct rhino unearthed at a site called Haughton Crater in Nunavut, Canada's northernmost territory, that was up to 24 million years old. They showed how this species fit into the rhino family tree. Haughton Crater's cold and dry conditions were considered ideal for preserving proteins. Preservation in the hot climate of Turkana was more unexpected. DNA and proteins, fundamental molecules in biology, possess distinct structures and functions. Deoxyribonucleic acid is the blueprint for life, bearing instructions for an organism's development, growth and reproduction. Proteins perform numerous functions based on instructions from DNA. "Proteins are encoded by our genetic code, DNA, so protein sequences reveal information about relatedness between different individuals, and biological sex, among other things," Green said. The scientists extracted peptides - chains of organic compounds called amino acids that combine to form proteins - found inside tooth enamel. "Some proteins help build teeth, the hardest and most durable structures in animal bodies," Green added. "Enamel is mostly rock: a mineral called hydroxyapatite. But its formation is biologically mediated by proteins that guide both shape and hardness over time. Because these proteins become entombed deep within enamel mineral, we have some reason to expect that protein fragments can be preserved over many millions of years," Green said. Homo sapiens appeared about 300,000 years ago. Ancient proteins previously have been found in the teeth of some extinct species in the human evolutionary lineage, called hominins. The Turkana region has yielded important hominin fossils. "Hominins have evolutionary origins and/or diversification in the area where our samples derive, so our results have promise in future exploration of the enamel proteome (set of proteins) of our evolutionary ancestors from the Turkana Basin of Kenya," said study co-author Timothy Cleland, a physical scientist at the Smithsonian Museum Conservation Institute in Maryland. The proteins studied came from large-bodied species dating to the age of mammals that followed the demise of the dinosaurs that had dominated during the preceding Mesozoic era, which ended 66 million years ago. Green said that in the new research the number of detectable proteins declined in progressively older fossils. But Green did not rule out finding proteins dating to the age of dinosaurs, saying, "Newer and better methods for extracting and detecting ancient proteins could, perhaps, push paleoproteomics into the Mesozoic."

Ancient proteins found in fossils up to 24 million years old
Ancient proteins found in fossils up to 24 million years old

CNA

time09-07-2025

  • Science
  • CNA

Ancient proteins found in fossils up to 24 million years old

WASHINGTON :Scientists in recent years have made progress in finding ancient DNA in fossils, gaining insight into organisms that lived long ago. But the oldest DNA obtained so far dates back about two million years. Proteins, a cell's molecular machinery, also offer valuable information and have the virtue of surviving much longer, as new research shows. Scientists have now extracted and sequenced proteins from dental fossils of extinct rhinoceroses, elephants and hippopotamuses, including from a rhino tooth 21-24 million years old. Separate research teams found protein fragments in fossils from vastly different environments - the frigid High Arctic of Canada and a scorching rift valley in Kenya. "Together, these complementary projects demonstrate that proteins - fundamental building blocks of living organisms that preserve information about evolutionary history - can be found in ancient fossils the world over," said Harvard University evolutionary biologist Daniel Green, lead author of the Kenya fossils study published in the journal Nature. This opens a new frontier for probing the deep evolutionary past, including the human lineage and perhaps even dinosaurs. "Ancient proteins can tell us about an organism's evolutionary history by providing molecular data from specimens too old for DNA preservation. This allows researchers to clarify evolutionary relationships across the tree of life, even for species that went extinct millions of years ago," said Ryan Sinclair Paterson, a postdoctoral researcher at the University of Copenhagen's Globe Institute and lead author of the Canada fossil study in Nature. DNA and proteins are fragile and degrade over time, but proteins are more resilient. The oldest-known DNA is from organisms that lived in Greenland two million years ago. Until now, the oldest-known proteins preserved well enough to offer insight on evolutionary relationships were about four million years old, from the Canadian Arctic. The new research pushes the boundaries of ancient protein research, a field called paleoproteomics, back by millions of years. Proteins were obtained from teeth of five rhino, elephant and hippo species that lived 1.5–18 million years ago in Kenya's Turkana region. The proteins showed the ties between the ancient animals and their modern-day relatives. Proteins also were extracted from a fragment of a tooth of an extinct rhino unearthed at a site called Haughton Crater in Nunavut, Canada's northernmost territory, that was up to 24 million years old. They showed how this species fit into the rhino family tree. Haughton Crater's cold and dry conditions were considered ideal for preserving proteins. Preservation in the hot climate of Turkana was more unexpected. DNA and proteins, fundamental molecules in biology, possess distinct structures and functions. Deoxyribonucleic acid is the blueprint for life, bearing instructions for an organism's development, growth and reproduction. Proteins perform numerous functions based on instructions from DNA. "Proteins are encoded by our genetic code, DNA, so protein sequences reveal information about relatedness between different individuals, and biological sex, among other things," Green said. The scientists extracted peptides - chains of organic compounds called amino acids that combine to form proteins - found inside tooth enamel. "Some proteins help build teeth, the hardest and most durable structures in animal bodies," Green added. "Enamel is mostly rock: a mineral called hydroxyapatite. But its formation is biologically mediated by proteins that guide both shape and hardness over time. Because these proteins become entombed deep within enamel mineral, we have some reason to expect that protein fragments can be preserved over many millions of years," Green said. Homo sapiens appeared about 300,000 years ago. Ancient proteins previously have been found in the teeth of some extinct species in the human evolutionary lineage, called hominins. The Turkana region has yielded important hominin fossils. "Hominins have evolutionary origins and/or diversification in the area where our samples derive, so our results have promise in future exploration of the enamel proteome (set of proteins) of our evolutionary ancestors from the Turkana Basin of Kenya," said study co-author Timothy Cleland, a physical scientist at the Smithsonian Museum Conservation Institute in Maryland. The proteins studied came from large-bodied species dating to the age of mammals that followed the demise of the dinosaurs that had dominated during the preceding Mesozoic era, which ended 66 million years ago. Green said that in the new research the number of detectable proteins declined in progressively older fossils. But Green did not rule out finding proteins dating to the age of dinosaurs, saying, "Newer and better methods for extracting and detecting ancient proteins could, perhaps, push paleoproteomics into the Mesozoic."

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store