Latest news with #researchers
Yahoo
an hour ago
- Science
- Yahoo
Your outdated tech might be a ‘goldmine'
In 2025, it's not uncommon for a typical household to have a drawer overflowing with discarded phones and cables. But this graveyard of circuitry isn't just a static memorial to past tech trends. For those willing to put in the effort, each of those old iPhones and micro USB cables still contains a small amount of valuable metals and minerals—including gold. Researchers estimate that a single printed circuit board can contain around 200–900 mg of gold per kilogram. The actual extraction of those precious metals from discarded tech is a labor-intensive process. Historically, it has often required the use of highly toxic chemicals like cyanide and mercury, which can be harmful both to the individuals doing the extraction and to the environment. But, researchers at Flinders University in Australia now say they've developed a new method of gold extraction and recycling that is far less hazardous and may have a lower environmental impact if scaled for production. By using a leaching reagent derived from trichloroisocyanuric acid—a sustainable compound commonly used in water disinfection—they were able to dissolve and extract gold without relying on dangerous chemicals. The researchers, who published their findings in the journal Nature Sustainability this week, demonstrate they could use their process to extract gold from e-waste, as well as used ore. 'Overall, this work provides a viable approach to achieve greener gold production from both primary and secondary resources, improving the sustainability of the gold supply,' they write in the paper. Gold has captured human attention for millennia. It backed the currency of empires, adorned countless pieces of royal jewelry, and has come to the rescue in root canals. Today, the coveted element is widely used in electronics, valued for its natural electrical conductivity, durability, and high resistance to corrosion. As a result, small amounts of gold are likely present in most of the devices found on a typical office worker's desk. And while tech companies have taken steps to extract and recycle that gold for years, much of it still ends up in landfills. The United Nations estimates that the world produced around 62 million tons of e-waste in 2022—a figure that's up 82 percent from 2010. Contamination from toxic substances used to strip gold from devices isn't the only concern. The industrial leaching process typically requires vast quantities of water, further compounding its environmental impact. Runoff from those facilities can also make their way into food supplies or local wildlife. The Flinders University researchers took a different approach. First, they developed a process using the trichloroisocyanuric acid that, when activated by salt water, effectively dissolved gold without the need for toxic substances. Next, they bound the dissolved gold to a new sulfur-rich polymer they designed themselves. The polymer was engineered to serve as a vehicle for selectively capturing gold, even in the presence of many other metals. Once the gold was extracted, the polymer could 'unmake' itself, reverting to its monomer state and leaving the gold behind. That fully separated gold could then be recycled and used again in new products. 'The aim is to provide effective gold recovery methods that support the many uses of gold, while lessening the impact on the environment and human health,' Flinders University professor and paper authorJustin Chalker said in a statement. In testing, the researchers demonstrated that their process could extract gold not only from e-waste, but also from ore concentrates and scientific waste streams. Although, the sheer volume of global e-waste makes it the most obvious candidate to benefit from this method. The researchers say they are currently working with mining and e-waste recycling companies to test the process on a larger scale. 'We dived into a mound of e-waste and climbed out with a block of gold!' Flinders University research associate and paper co-author Harshal Patel said in a statement. 'I hope this research inspires impactful solutions to pressing global challenges.' That said, everyday electronics consumers don't need to wait for this new method to scale up in order to benefit from e-waste recycling. Most major cities have certified e-waste recycling centers that accept large quantities of discarded electronics. Local scrap yards, as well as some private companies, will also pay a small amount for scrapped devices—especially those containing relatively high amounts of gold, silver, or copper. Large nonprofits like Goodwill also offer electronics recycling services. Many of these organizations handle the hard work of separating components from used devices, then sell the individual parts to industrial recyclers.
Yahoo
5 hours ago
- Science
- Yahoo
ChatGPT could affect your critical thinking skills, study finds
MIT researchersconducted a study analyzing the impact using ChatGPT in writing tasks can have on brain activity. The study is part ofMIT's Media Lab project called"Your Brain on ChatGPT," which is designed to assess the cognitive effect of relying on large language models (LLMs) like ChatGPT when authoring essays. Dig deeper Approximately 54 people between the ages of 18 and 39 participated in the study. The individuals were divided into three groups to compose several essays. RELATED: ChatGPT may be smart enough to graduate law school One group was allowed to use ChatGPT; the second, Google search; and the third, no AI tools at all. An electroencephalography (EEG) headset was used by the participants while writing to measure the participants' brain activity across 32 regions of the brain. Each patient drafted essays in three sessions and in a fourth session, some participants were reassigned. The individuals who used ChatGPT transitioned to writing unaided (called "LLM-to-Brain") while some who started the brain-only exercise used the LLM ("Brain-to-LLM") RELATED: ChatGPT outperformed doctors in diagnostic accuracy, study reveals The participants' essays were scored by both human teachers and an AI judge, and at the conclusion of the assignment, each person was interviewed following the sessions with researchers asking them about how much they felt they owned their writing. Researchers determined that of the three groups in the study, the ChatGPT users experienced the lowest brain engagement. The team concluded that their study has limitations that they document in their report and website and that more research is needed to better understand the use of ChatGPT in various parts of daily life. The Source Information for this story was provided by an MIT study, which is part of the MIT Media project "Your Brain on ChatGPT." This story was reported from Washington, D.C.
Yahoo
5 hours ago
- Science
- Yahoo
Earth's oldest rocks date back 4.16 billion years
While rocks are not exactly living things, they are not immune to Earth's fury. Ever-shifting tectonic plates constantly devour and pulverize them, or some rocks get turned into diamonds from the immense pressure underneath our feet. While life on Earth has almost been wiped out at least five times, some rocks pre-date life on Earth and have stood the ultimate test of time. Gray rocks uncovered in northern Nunavik, Quebec, Canada may be the ultimate primordial find. The stones date back 4.16 billion years to the Hadean era and are the oldest known rocks on the planet. They are described in a study published June 26 in the journal Science. Earth was a ball of molten lava when it first formed about 4.5 billion years ago. Scientists originally believed that Earth's first eon–the Hadean–ended when the first rocks formed. A golden spike–a geological marker indicates a boundary between time periods–that ended the Hadean eon is about 4.03 billion years old and located in Canada's Northwest Territories. The Nuvvuagittuq Greenstone Belt, located over 1,000 miles southeast of the Hadean's golden spike, has long been known for its ancient rocks. However, researchers have disagreed about the true age of these plains of gray stone that line the eastern shore of Hudson Bay in Quebec. In 2008, researchers proposed that these rocks dated back 4.3 billion years. Other scientists using a different dating method contested, saying that contaminants from ages ago were altering the rocks' age and they were only 3.8 billion years old. 'For over 15 years, the scientific community has debated the age of volcanic rocks from northern Quebec,' study co-author and University of Ottawa geologist Jonathan O'Neill said in a statement. 'Our previous research suggested that they could date back 4.3 billion years, but this wasn't the consensus.' [ Related: How old is Earth? It's a surprisingly tough question to answer. ] This new study used rock samples from a different part of the Nuvvuagittuq Greenstone Belt. The samples were collected in 2017 near the municipality of Inukjuak, Nunavik, by study co-author Christian Sole, while was completing his Master's degree. To determine the age of these rocks, the team combined geochemistry with petrology–a branch in geology that focuses on the composition, texture, and structure of rocks and the conditions under which they form. They also applied two radiometric dating methods to see how radioactive isotopes of the elements samarium and neodymium change over time. [ Related: Ancient rocks tie Roman Empire's collapse to a mini ice age. ] They found that both chronometers indicated that the rocks are 4.16 billion years old. Since the planet Earth formed roughly 4.5 billion years ago, this puts the rocks within a few hundred million years of our planet's earliest day–somewhat close in geological time. Typically, primordial rocks like these are melted and used over and over again by Earth's moving tectonic plates. While scientists uncovered some 4 billion-year-old rocks in Canada's Acasta Gneiss Complex, finding them at the surface is not common. According to the team, this discovery opens a unique window on the early Earth, potentially offering up clues to its existence. 'Understanding these rocks is going back to the very origins of our planet,' O'Neill said. 'This allows us to better understand how the first continents were formed and to reconstruct the environment from which life could have emerged.'


Daily Mail
7 hours ago
- Health
- Daily Mail
The Great British cuppa really could be a lifesaver, as scientists find two cups of tea a day could drastically lower your risk of heart failure and stroke - just don't add SUGAR
Britons drink 100million of them every day – and it turns out the Great British cuppa could be a lifesaver. Tea, which Oscar Wilde described as the only simple pleasure left, lowers the risk of heart problems and stroke, according to new research. Up to two cups of unsweetened tea a day reduces the risk by up to 21 per cent. But add sugar or sweeteners and the benefits are lost, say academics. Researchers from Nantong University, China, used data on 177,810 UK adults, with an average age of around 55. Of those, 147,903 were tea drinkers, and 68.2 per cent did not add sugar and sweeteners. All were healthy at the start of the study, but over an average of 12.7 years, 15,003 cases of cardiovascular disease were diagnosed, including 2,679 strokes and 2,908 heart failures, it was reported in the International Journal of Cardiology Cardiovascular Risk and Prevention. Those who drank up to two cups of unsweetened tea a day had a 21 per cent reduced risk of heart failure, a 14 per cent lesser chance of having a stroke and were 7 per cent less likely to be diagnosed with coronary heart disease. No such effects were found for sweetened tea. It is thought an unsweetened cuppa better preserves biologically active compounds, including polyphenols, in the tea, which have antioxidant and anti-inflammatory effects. Both sugars and artificial sweeteners can promote insulin resistance and metabolic dysregulation, which are well-established cardiovascular disease risk factors.


The National
12 hours ago
- Science
- The National
Pictures of the week: From a mosque in Oman to a mangrove in Indonesia
• Scientists estimate there could be as many as 3 million fungal species globally • Only about 160,000 have been officially described leaving around 90% undiscovered • Fungi account for roughly 90% of Earth's unknown biodiversity • Forest fungi help tackle climate change, absorbing up to 36% of global fossil fuel emissions annually and storing around 5 billion tonnes of carbon in the planet's topsoil