
Fermilab: Muon g-2 announces most precise measurement of the magnetic anomaly of the muon
'The anomalous magnetic moment, or g–2, of the muon is important because it provides a sensitive test of the Standard Model of particle physics. This is an exciting result and it is great to see an experiment come to a definitive end with a precision measurement,' said Regina Rameika, the U.S. Department of Energy's Associate Director for the Office of High Energy Physics.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles


Vancouver Sun
23-06-2025
- Vancouver Sun
The largest digital camera ever built releases its first shots of the universe
NEW YORK — The largest digital camera ever built released its first shots of the universe Monday — including colourful nebulas, stars and galaxies. The Vera C. Rubin Observatory, located on a mountaintop in Chile, was built to take a deeper look at the night sky, covering hidden corners. Funded by the U.S. National Science Foundation and U.S. Department of Energy, it will survey the southern sky for the next 10 years. The observatory's first look features the vibrant Trifid and Lagoon nebulas, located thousands of light-years from Earth. A light-year is nearly 10 trillion kilometres. A gaggle of galaxies known as the Virgo Cluster were also captured, including two bright blue spirals. Start your day with a roundup of B.C.-focused news and opinion. By signing up you consent to receive the above newsletter from Postmedia Network Inc. A welcome email is on its way. If you don't see it, please check your junk folder. The next issue of Sunrise will soon be in your inbox. Please try again Interested in more newsletters? Browse here. The observatory hopes to image 20 billion galaxies and discover new asteroids and other celestial objects. The effort is named after astronomer Vera Rubin, who offered the first tantalizing evidence that a mysterious force called dark matter might be lurking in the universe. Researchers hope the observatory's discerning camera may yield clues about this elusive entity along with another called dark energy.


Toronto Star
10-06-2025
- Toronto Star
Fermilab: Muon g-2 announces most precise measurement of the magnetic anomaly of the muon
Batavia, Ill., June 04, 2025 (GLOBE NEWSWIRE) — Scientists working on the Muon g-2 experiment, hosted by the U.S. Department of Energy's Fermi National Accelerator Laboratory, have released their third and final measurement of the muon magnetic anomaly. This value is related to g-2, the experiment's namesake measurement. The final result agrees with their published results from 2021 and 2023 but with a much better precision of 127 parts-per-billion, surpassing the original experimental design goal of 140 parts-per-billion. 'The anomalous magnetic moment, or g–2, of the muon is important because it provides a sensitive test of the Standard Model of particle physics. This is an exciting result and it is great to see an experiment come to a definitive end with a precision measurement,' said Regina Rameika, the U.S. Department of Energy's Associate Director for the Office of High Energy Physics.


Toronto Sun
03-06-2025
- Toronto Sun
Long-running experiment finds tiny particle is still acting weird: 'Huge feat in precision'
The mysterious particles called muons are considered heavier cousins to electrons Published Jun 03, 2025 • Last updated 10 minutes ago • 2 minute read This image provided by the Fermi National Accelerator Laboratory shows the ring-shaped track that scientists used to study tiny particles called muons, July 20, 2023 in Batavia, Ill. Photo by Ryan Posteland/Fermi National Accelerator Laboratory / AP NEW YORK — Final results from a long-running U.S.-based experiment announced Tuesday show a tiny particle continues to act strangely — but that's still good news for the laws of physics as we know them. This advertisement has not loaded yet, but your article continues below. THIS CONTENT IS RESERVED FOR SUBSCRIBERS ONLY Subscribe now to read the latest news in your city and across Canada. Unlimited online access to articles from across Canada with one account. Get exclusive access to the Toronto Sun ePaper, an electronic replica of the print edition that you can share, download and comment on. Enjoy insights and behind-the-scenes analysis from our award-winning journalists. Support local journalists and the next generation of journalists. Daily puzzles including the New York Times Crossword. SUBSCRIBE TO UNLOCK MORE ARTICLES Subscribe now to read the latest news in your city and across Canada. Unlimited online access to articles from across Canada with one account. Get exclusive access to the Toronto Sun ePaper, an electronic replica of the print edition that you can share, download and comment on. Enjoy insights and behind-the-scenes analysis from our award-winning journalists. Support local journalists and the next generation of journalists. Daily puzzles including the New York Times Crossword. REGISTER / SIGN IN TO UNLOCK MORE ARTICLES Create an account or sign in to continue with your reading experience. Access articles from across Canada with one account. Share your thoughts and join the conversation in the comments. Enjoy additional articles per month. Get email updates from your favourite authors. THIS ARTICLE IS FREE TO READ REGISTER TO UNLOCK. Create an account or sign in to continue with your reading experience. Access articles from across Canada with one account Share your thoughts and join the conversation in the comments Enjoy additional articles per month Get email updates from your favourite authors Don't have an account? Create Account 'This experiment is a huge feat in precision,' said Tova Holmes, an experimental physicist at the University of Tennessee, Knoxville who is not part of the collaboration. The mysterious particles called muons are considered heavier cousins to electrons. They wobble like a top when inside a magnetic field, and scientists are studying that motion to see if it lines up with the foundational rulebook of physics called the Standard Model. Experiments in the 1960s and 1970s seemed to indicate all was well. But tests at Brookhaven National Laboratory in the late 1990s and early 2000s produced something unexpected: the muons weren't behaving like they should. Decades later, an international collaboration of scientists decided to rerun the experiments with an even higher degree of precision. The team raced muons around a magnetic, ring-shaped track _ the same one used in Brookhaven's experiment — and studied their signature wiggle at the Fermi National Accelerator Laboratory near Chicago. Your noon-hour look at what's happening in Toronto and beyond. By signing up you consent to receive the above newsletter from Postmedia Network Inc. Please try again This advertisement has not loaded yet, but your article continues below. The first two sets of results — unveiled in 2021 and 2023 _ seemed to confirm the muons' weird behavior, prompting theoretical physicists to try to reconcile the new measurements with the Standard Model. Now, the group has completed the experiment and released a measurement of the muon's wobble that agrees with what they found before, using more than double the amount of data compared to 2023. They submitted their results to the journal Physical Review Letters. That said, it's not yet closing time for our most basic understanding of what's holding the universe together. While the muons raced around their track, other scientists found a way to more closely reconcile their behavior with the Standard Model with the help of supercomputers. This advertisement has not loaded yet, but your article continues below. There's still more work to be done as researchers continue to put their heads together and future experiments take a stab at measuring the muon wobble — including one at the Japan Proton Accelerator Research Complex that's expected to start near the end of the decade. Scientists also are still analyzing the final muon data to see if they can glean information about other mysterious entities like dark matter. 'This measurement will remain a benchmark … for many years to come,' said Marco Incagli with the National Institute for Nuclear Physics in Italy. By wrangling muons, scientists are striving to answer fundamental questions that have long puzzled humanity, said Peter Winter with Argonne National Laboratory. 'Aren't we all curious to understand how the universe works?' said Winter. Other Sports Canada Toronto & GTA Other Sports Canada