
Congo's coltan miners dig for world's tech — and struggle regardless of who is in charge
RUBAYA, Congo — Nestled in the green hills of Masisi territory in Congo , the artisanal Rubaya mining site hums with the sound of generators, as hundreds of men labor by hand to extract coltan, a key mineral crucial for producing modern electronics and defense technology — and fiercely sought after worldwide.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
15 hours ago
- Yahoo
Your outdated tech might be a ‘goldmine'
In 2025, it's not uncommon for a typical household to have a drawer overflowing with discarded phones and cables. But this graveyard of circuitry isn't just a static memorial to past tech trends. For those willing to put in the effort, each of those old iPhones and micro USB cables still contains a small amount of valuable metals and minerals—including gold. Researchers estimate that a single printed circuit board can contain around 200–900 mg of gold per kilogram. The actual extraction of those precious metals from discarded tech is a labor-intensive process. Historically, it has often required the use of highly toxic chemicals like cyanide and mercury, which can be harmful both to the individuals doing the extraction and to the environment. But, researchers at Flinders University in Australia now say they've developed a new method of gold extraction and recycling that is far less hazardous and may have a lower environmental impact if scaled for production. By using a leaching reagent derived from trichloroisocyanuric acid—a sustainable compound commonly used in water disinfection—they were able to dissolve and extract gold without relying on dangerous chemicals. The researchers, who published their findings in the journal Nature Sustainability this week, demonstrate they could use their process to extract gold from e-waste, as well as used ore. 'Overall, this work provides a viable approach to achieve greener gold production from both primary and secondary resources, improving the sustainability of the gold supply,' they write in the paper. Gold has captured human attention for millennia. It backed the currency of empires, adorned countless pieces of royal jewelry, and has come to the rescue in root canals. Today, the coveted element is widely used in electronics, valued for its natural electrical conductivity, durability, and high resistance to corrosion. As a result, small amounts of gold are likely present in most of the devices found on a typical office worker's desk. And while tech companies have taken steps to extract and recycle that gold for years, much of it still ends up in landfills. The United Nations estimates that the world produced around 62 million tons of e-waste in 2022—a figure that's up 82 percent from 2010. Contamination from toxic substances used to strip gold from devices isn't the only concern. The industrial leaching process typically requires vast quantities of water, further compounding its environmental impact. Runoff from those facilities can also make their way into food supplies or local wildlife. The Flinders University researchers took a different approach. First, they developed a process using the trichloroisocyanuric acid that, when activated by salt water, effectively dissolved gold without the need for toxic substances. Next, they bound the dissolved gold to a new sulfur-rich polymer they designed themselves. The polymer was engineered to serve as a vehicle for selectively capturing gold, even in the presence of many other metals. Once the gold was extracted, the polymer could 'unmake' itself, reverting to its monomer state and leaving the gold behind. That fully separated gold could then be recycled and used again in new products. 'The aim is to provide effective gold recovery methods that support the many uses of gold, while lessening the impact on the environment and human health,' Flinders University professor and paper authorJustin Chalker said in a statement. In testing, the researchers demonstrated that their process could extract gold not only from e-waste, but also from ore concentrates and scientific waste streams. Although, the sheer volume of global e-waste makes it the most obvious candidate to benefit from this method. The researchers say they are currently working with mining and e-waste recycling companies to test the process on a larger scale. 'We dived into a mound of e-waste and climbed out with a block of gold!' Flinders University research associate and paper co-author Harshal Patel said in a statement. 'I hope this research inspires impactful solutions to pressing global challenges.' That said, everyday electronics consumers don't need to wait for this new method to scale up in order to benefit from e-waste recycling. Most major cities have certified e-waste recycling centers that accept large quantities of discarded electronics. Local scrap yards, as well as some private companies, will also pay a small amount for scrapped devices—especially those containing relatively high amounts of gold, silver, or copper. Large nonprofits like Goodwill also offer electronics recycling services. Many of these organizations handle the hard work of separating components from used devices, then sell the individual parts to industrial recyclers.


Fast Company
15-06-2025
- Fast Company
Computer simulations reveal the first wheel was invented nearly 6,000 years ago
Imagine you're a copper miner in southeastern Europe in the year 3900 BCE. Day after day you haul copper ore through the mine's sweltering tunnels. You've resigned yourself to the grueling monotony of mining life. Then one afternoon, you witness a fellow worker doing something remarkable. With an odd-looking contraption, he casually transports the equivalent of three times his body weight on a single trip. As he returns to the mine to fetch another load, it suddenly dawns on you that your chosen profession is about to get far less taxing and much more lucrative. What you don't realize: You're witnessing something that will change the course of history—not just for your tiny mining community, but for all of humanity. Despite the wheel's immeasurable impact, no one is certain as to who invented it, or when and where it was first conceived. The hypothetical scenario described above is based on a 2015 theory that miners in the Carpathian Mountains (now Hungary) first invented the wheel nearly 6,000 years ago as a means to transport copper ore. The theory is supported by the discovery of more than 150 miniaturized wagons by archaeologists working in the region. These pint-size, four-wheeled models were made from clay, and their outer surfaces were engraved with a wickerwork pattern reminiscent of the basketry used by mining communities at the time. Carbon dating later revealed that these wagons are the earliest known depictions of wheeled transport to date. This theory also raises a question of particular interest to me, an aerospace engineer who studies the science of engineering design. How did an obscure, scientifically naive mining society discover the wheel, when highly advanced civilizations, such as the ancient Egyptians, did not? A controversial idea It has long been assumed that wheels evolved from simple wooden rollers. But until recently no one could explain how or why this transformation took place. What's more, beginning in the 1960s, some researchers started to express strong doubts about the roller-to-wheel theory. After all, for rollers to be useful, they require flat, firm terrain and a path free of inclines and sharp curves. Furthermore, once the cart passes them, used rollers need to be continually brought around to the front of the line to keep the cargo moving. For all these reasons, the ancient world used rollers sparingly. According to the skeptics, rollers were too rare and too impractical to have been the starting point for the evolution of the wheel. But a mine—with its enclosed, human-made passageways—would have provided favorable conditions for rollers. This factor, among others, compelled my team to revisit the roller hypothesis. A turning point The transition from rollers to wheels requires two key innovations. The first is a modification of the cart that carries the cargo. The cart's base must be outfitted with semicircular sockets, which hold the rollers in place. This way, as the operator pulls the cart, the rollers are pulled along with it. This innovation may have been motivated by the confined nature of the mine environment, where having to periodically carry used rollers back around to the front of the cart would have been especially onerous. The discovery of socketed rollers represented a turning point in the evolution of the wheel and paved the way for the second and most important innovation. This next step involved a change to the rollers themselves. To understand how and why this change occurred, we turned to physics and computer-aided engineering. Simulating the wheel's evolution To begin our investigation, we created a computer program designed to simulate the evolution from a roller to a wheel. Our hypothesis was that this transformation was driven by a phenomenon called ' mechanical advantage.' This same principle allows pliers to amplify a user's grip strength by providing added leverage. Similarly, if we could modify the shape of the roller to generate mechanical advantage, this would amplify the user's pushing force, making it easier to advance the cart. Our algorithm worked by modeling hundreds of potential roller shapes and evaluating how each one performed, both in terms of mechanical advantage and structural strength. The latter was used to determine whether a given roller would break under the weight of the cargo. As predicted, the algorithm ultimately converged upon the familiar wheel-and-axle shape, which it determined to be optimal. During the execution of the algorithm, each new design performed slightly better than its predecessor. We believe a similar evolutionary process played out with the miners 6,000 years ago. It is unclear what initially prompted the miners to explore alternative roller shapes. One possibility is that friction at the roller-socket interface caused the surrounding wood to wear away, leading to a slight narrowing of the roller at the point of contact. Another theory is that the miners began thinning out the rollers so that their carts could pass over small obstructions on the ground. Either way, thanks to mechanical advantage, this narrowing of the axle region made the carts easier to push. As time passed, better-performing designs were repeatedly favored over the others, and new rollers were crafted to mimic these top performers. Consequently, the rollers became more and more narrow, until all that remained was a slender bar capped on both ends by large discs. This rudimentary structure marks the birth of what we now refer to as 'the wheel.' According to our theory, there was no precise moment at which the wheel was invented. Rather, just like the evolution of species, the wheel emerged gradually from an accumulation of small improvements. This is just one of the many chapters in the wheel's long and ongoing evolution. More than 5,000 years after the contributions of the Carpathian miners, a Parisian bicycle mechanic invented radial ball bearings, which once again revolutionized wheeled transportation. Ironically, ball bearings are conceptually identical to rollers, the wheel's evolutionary precursor. Ball bearings form a ring around the axle, creating a rolling interface between the axle and the wheel hub, thereby circumventing friction. With this innovation, the evolution of the wheel came full circle. This example also shows how the wheel's evolution, much like its iconic shape, traces a circuitous path—one with no clear beginning, no end, and countless quiet revolutions along the way.


Washington Post
18-05-2025
- Washington Post
Congo's coltan miners dig for world's tech — and struggle regardless of who is in charge
RUBAYA, Congo — Nestled in the green hills of Masisi territory in Congo , the artisanal Rubaya mining site hums with the sound of generators, as hundreds of men labor by hand to extract coltan, a key mineral crucial for producing modern electronics and defense technology — and fiercely sought after worldwide.