Violent Collision of Two Black Holes Rippled Across the Universe
The violent collision between the spinning objects, one about 100 times the mass of the sun and the other about 140 times that amount, produced a gravitational wave that rippled across the universe.
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
an hour ago
- Yahoo
Scientists Built a Cell That Can Keep Time Like a 24-Hour Clock
"Hearst Magazines and Yahoo may earn commission or revenue on some items through these links." Here's what you'll learn when you read this story: Our biological clock, or circadian rhythm, is immensely important to our health, and scientists are now unpacking the process's secrets at the cellular level. Researchers successfully created synthetic, cell-like structures, or vesicles, to test how varying concentrations of so-called 'clock proteins' affect the vesicles' natural timekeeping. The team—amongst other discoveries—found that clock accuracy was proportional to both the amount of clock proteins and vesicle size. One of the many biological wonders of life on Earth is the near-perfect ways our bodies can sense the passage of time. Known as our biological clock or circadian rhythm, this natural process regulates our wake-sleep cycle and is highly attuned to Earth's 24-hour rotation. To better understand this mechanism, scientists from University of California Merced attempted to reconstruct this clockwork system in cyanobacteria. The team created cell-like structures known as vesicles (each only 2 to 10 micrometers in diameter) and loaded them with 'clock proteins'—groups of proteins that play an important role in regulating the circadian rhythm. The results were published this week in the journal Nature this study, the authors used cyanobacterial clock proteins KaiA, KaiB, and KaiC. As describes, KaiC acted as the system's hub while the other proteins shifted the process forward and backward. The team then inserted the vesicle lipid with a fluorescent tag whose steady glow showed the circadian rhythm in action, and found that both vesicle size and the amount of 'clock proteins' were proportional to how well the vesicles could keep time. 'This study shows that we can dissect and understand the core principles of biological timekeeping using simplified, synthetic systems,' Anand Bala Subramaniam from UC Merced, one of the lead authors on the study, said in a press statement. When the proteins were reduced, however, the vesicles were no longer accurate timekeepers. The authors were able to reliably reproduce this gradual loss of timekeeping, and by building computational models of the vesicle population, the scientists also discerned that the circadian rhythm's additional role of turning genes on and off—in order to control physiological and behavioral processes—did not interfere with this timekeeping ability on the individual level, but proved essential for synching clocks across the population. 'This new study introduces a method to observe reconstituted clock reactions within size-adjustable vesicles that mimic cellular dimensions,' Mingxu Fang, a microbiologist from Ohio State University who wasn't involved with the study, said in a press statement. 'This powerful tool enables direct testing of how and why organisms with different cell sizes may adopt distinct timing strategies, thereby deepening our understanding of biological timekeeping mechanisms across life forms.' Understanding the ins and outs of circadian rhythm is immensely important, as the biological process—or the disruption of it—can lead to a variety of illnesses, including cardiovascular disorders and cancer. It can also impact the treatments for these diseases, and scientists have even explored a concept known as 'chronochemotherapy' to increase the efficacy of the drugs while limiting toxicity by carefully timing doses. The 24-hour clocks within our cells are the smallest on Earth, but they also might be the most important. You Might Also Like The Do's and Don'ts of Using Painter's Tape The Best Portable BBQ Grills for Cooking Anywhere Can a Smart Watch Prolong Your Life? Solve the daily Crossword


Health Line
7 hours ago
- Health Line
What's the Difference Between a Gene and a Chromosome?
Genes are segments of DNA (deoxyribonucleic acid) that are located inside every human cell. The DNA inside each cell is tightly coiled in structures called chromosomes. Each chromosome contains a single thread of DNA with many different genes. The genes provide instructions for different traits, such as eye or hair color, or male or female sex. Chromosomes come in pairs. Humans have 46 chromosomes, in 23 pairs. People inherit chromosomes from their parents. A child gets one of each pair of chromosomes from their mother and one of each pair of chromosomes from their father. The term ' genetic inheritance ' is the passing down of DNA from parents to children. What is a genetic disorder? Genetic disorders, such as Down syndrome or cystic fibrosis, occur when: there's a change (mutation) in a gene on a chromosome a chromosome is missing a part (called a deletion) when genes move from one chromosome to another (called a translocation) when a cell has extra chromosomes or missing chromosomes A worldwide gene research project, called the Human Genome Project, is creating a map of all human genes and their location on chromosomes. Doctors hope to use this map to find and treat genetic disorders. What do genes and chromosomes have to do with your health? Genes are involved in almost every human trait and disease. They influence how your body responds to: certain health conditions, such as infections medications treatments for health conditions certain behaviors, such as smoking or alcohol use The more we understand how genes affect our health or are linked to disease, the earlier doctors can respond to diseases and provide more effective targeted treatments.


Health Line
7 hours ago
- Health Line
Understanding Non-Mendelian Genetics (Patterns of Inheritance)
In Mendelian inheritance patterns, you receive one version of a gene, called an allele, from each parent. These alleles can be dominant or recessive. Non-Mendelian genetics don't completely follow these principles. Genetics is an expansive field that focuses on the study of genes. Scientists who specialize in genetics are called geneticists. Geneticists study many different topics, including: how genes are inherited from our parents how DNA and genes vary between different people and populations how genes interact with factors both inside and outside of the body If you're looking into more information on genetics topics, you may come across two types of genetics: Mendelian and non-Mendelian genetics. This article reviews both types of genetics, with a focus on non-Mendelian genetics. Continue reading to learn more. What is Mendelian genetics? It's possible that you may remember some concepts of Mendelian genetics from your high school biology class. If you've ever done a Punnett square, you've learned about Mendelian genetics. The principles of Mendelian genetics were established by the Austrian monk Gregor Mendel in the mid-19th century based on his experiments with pea plants. Through his experiments, Mendel pinpointed how certain traits (such as pea color) are passed down across generations. From this information, he developed the following three laws, which are the basis of Mendelian genetics: Dominance. Some variants of a gene, called alleles, are dominant over others. Non-dominant alleles are referred to as recessive. If both a dominant and recessive allele are inherited, the dominant trait will be the one that shows. Segregation. Offspring inherit one allele for a gene from each of their parents. These alleles are passed down randomly. Independent assortment. Genetic traits are inherited independently of each other. Pea color: An example of Mendelian genetics at work To illustrate how Mendelian genetics works, let's use an example with pea plants, in which yellow pea color (Y) is dominant and green pea color (y) is recessive. In this particular example, each parent pea plant is heterozygous, meaning it has a dominant and recessive allele, noted as Yy. When these two plants are bred, noted as Yy x Yy, the following pattern of inheritance will be seen: 25% of offspring will be homozygous dominant (YY) and have yellow peas. 50% of offspring will be heterozygous (Yy) and have yellow peas. 25% of offspring will be homozygous recessive (yy) and have green peas. What are examples of health conditions that follow Mendelian patterns of inheritance? There are several health conditions that follow Mendelian patterns of inheritance. Alleles for sickle cell anemia and cystic fibrosis are recessive. This means that you need two copies of the recessive allele, one from each parent, to have these conditions. In contrast, the allele for Huntington's disease is dominant. That means that you only need a single copy of the allele (from one of your parents) to have it. Sex-linked conditions Some health conditions can be linked to genes in the sex chromosomes (X and Y). For example, hemophilia is X-linked recessive. In those assigned male at birth, who have a single X chromosome, only one copy of the recessive allele is enough to have hemophilia. That's why hemophilia is more common in males. Individuals assigned female at birth have two X chromosomes, meaning they need two copies of the recessive allele to have hemophilia. What are non-Mendelian genetics? Exceptions exist for every rule, and that's also true for genetics. Simply put, non-Mendelian genetics refers to inheritance patterns that don't follow Mendel's laws. Here are some different types of non-Mendelian genetics: Polygenic traits Some traits are determined by two or more genes instead of just one. These are called polygenic traits and don't follow Mendelian inheritance patterns. Examples of polygenic health conditions include: hypertension diabetes certain cancers, such as breast and prostate cancer Mitochondrial inheritance Your mitochondria are the energy factories of your cells and also contain their own DNA, called mtDNA. While there are some exceptions, mtDNA is usually inherited from your mother. You get your mtDNA from your mother because the mitochondria present in sperm typically degrade after fertilization. This leaves behind just the mitochondria in the egg. Examples of Mitochondrial health conditions include Leber hereditary optic neuropathy (LHON) and mitochondrial encephalomyopathy. Epigenetic inheritance Epigenetics refers to how genes are expressed and regulated by factors outside of the DNA sequence. This includes things like DNA methylation, in which a chemical called a methyl group is added to a gene, turning it 'on' or 'off'. Epigenetic factors can change as we get older and are exposed to different things in our environment. Sometimes, these changes can be passed down to the next generation, which is called epigenetic inheritance. Certain cancers (such as breast, colorectal, and esophageal cancer) have been linked to epigenetic changes. Neurological disorders like Alzheimer's and metabolic diseases like Type 2 diabetes have also been associated with epigenetic inheritance. Genetic imprinting While we inherit two copies of a gene, one from each parent, in some cases, only one copy of the gene may be turned 'on' via DNA methylation. This is called imprinting, and it only affects a small percentage of our genes. Which gene is turned 'on' can depend on where the gene came from. For example, some genes are only turned 'on' when they come from the egg, while others are only 'on' when they come from the sperm. Examples of conditions associated with genetic imprinting include Beckwith-Wiedemann syndrome, Silver-Russell syndrome, and Transient Neonatal Diabetes Mellitus. Gene conversion Gene conversion can happen during meiosis, the type of cell division that helps make sperm and eggs. After meiosis, each sperm and egg contains one set of chromosomes and therefore one set of alleles to be passed down to offspring. During meiosis, genetic information from one copy of an allele (the donor) may be transferred to the corresponding allele (the recipient). This results in a genetic change that effectively converts the recipient allele to the donor allele. Genetic conditions influenced by gene conversions include hemophilia A, sickle cell disease, and congenital adrenal hyperplasia. What are examples of health conditions that follow non-Mendelian patterns of inheritance? Most health conditions we're familiar with don't follow Mendelian inheritance patterns. These conditions are often polygenic, meaning the effects of multiple genes contribute to them. For example, cystic fibrosis is caused by inheriting two copies of a recessive allele of a specific gene. However, there's not an isolated 'heart disease' allele that we inherit that causes us to develop heart disease. Mitochondrial disorders, which are caused by changes in mtDNA, are another type of health condition that follows non-Mendelian patterns of inheritance. This is because you typically inherit mtDNA from your mother. Sometimes problems with genetic imprinting can lead to disorders. Prader-Willi syndrome and Beckwith-Wiedemann syndrome are two examples. How do Mendelian and non-Mendelian genetics contribute to our understanding of genetic diseases in humans? Understanding both Mendelian and non-Mendelian inheritance patterns is important in understanding how different genetic diseases may be passed down. For example, if you have a certain genetic disease or you know that one runs in your family, you may have concerns about future children inheriting it. In this situation, working with a medical professional, such as a genetic counselor, who understands a disease's inheritance patterns can help you get an understanding of the risk of future children having the disease. Additionally, understanding genetic changes and inheritance can affect future therapies. This information can be important for developing gene therapies for a variety of genetic diseases. Takeaway Mendelian genetics focuses on the principles that there are dominant and recessive alleles and that we randomly inherit one copy of an allele from each parent. Some health conditions follow basic Mendelian inheritance patterns. Examples include cystic fibrosis and Huntington's disease. Non-Mendelian genetics don't follow the principles outlined by Mendel. Many health conditions we're familiar with don't follow Mendelian inheritance patterns because they're polygenic, affect mtDNA, or are associated with imprinting.