What are these strange swirls around an infant star? 'We may be watching a planet come into existence in real time'
Astronomers have seen what appears to be a forming planet carving out a complex pattern in a disk of gas and dust around a young star. The discovery of this spiral architect could help us better understand how planetary systems like the solar system came to be.
The infant extrasolar planet, or "exoplanet," is creating a spiral arm pattern in the planet-forming protoplanetary disk of the 10 million-year-old star HD 135344B, also known as SAO 206462, located in the Scorpius OB2-3 star-forming region. If 10 million years old doesn't seem particularly young, remember the sun is considered middle-aged — and its around 4.6 billion years old.
The discovery of the potential planetary culprit for this swirling spiral pattern was made using the Very Large Telescope (VLT) and its Enhanced Resolution Imager and Spectrograph ERIS) instrument. It may represent the first time astronomers have witnessed a planet actively forming within a protoplanetary disk.
"We will never witness the formation of Earth, but here, around a young star 440 light-years away, we may be watching a planet come into existence in real time," Francesco Maio, study team leader and a researcher at the University of Florence, said in a statement.
Maio and colleagues estimate this budding planet is around twice as large as Jupiter. It orbits HD 135344B at a similar distance to Neptune's orbit around the sun. That's about 30 times the distance between Earth and the sun.
And as this potential planet seems to carve channels into the protoplanetary disk of HD 135344B, it is gathering material to further facilitate its growth.
Baby exoplanet sweeps up stellar leftovers
Stars form from overly dense cool patches in vast clouds of interstellar gas and dust, which collapse under their own gravity. As these stars continue to grow, swirling clouds of gas and dust called protoplanetary disks settle around them. It is within this disk that planets will be born.
Astronomers predict that when this happens, these infant worlds sweep up material to build their own masses, creating intricate structures like rings and channels similar to the grooves in a record, and spirals resembling the spiral arms of the Milky Way. However, catching these exoplanet sculptors has been challenging.
Exemplifying this is the fact that astronomers had previously detected the spiral structure of HD 135344B's protoplanetary disk, using the VLT Spectro-Polarimetric High-contrast Exoplanet Research (SPHERE) instrument — but had missed evidence of a planet causing it.
However, ERIS allowed the VLT and its operators to dive deeper into this protoplanetary disk, revealing a prime suspect for its shape: a hidden exoplanet sculptor.
This potential baby planet lurks at the base of one of the disk's spiral arms. That is exactly where scientists have predicted such a spiral-sculpting infant planet should dwell.
Related Stories:
— New kind of pulsar may explain how mysterious 'black widow' systems evolve
— Hear 'black widow' pulsar's song as it destroys companion
—NASA X-ray spacecraft reveals secrets of a powerful, spinning neutron star
"What makes this detection potentially a turning point is that, unlike many previous observations, we are able to directly detect the signal of the protoplanet, which is still highly embedded in the disk,' Maio explained. "This gives us a much higher level of confidence in the planet's existence, as we're observing the planet's own light."
The team's research was published on Monday (July 21) in the journal Astronomy & Astrophysics.
Solve the daily Crossword
Hashtags

Try Our AI Features
Explore what Daily8 AI can do for you:
Comments
No comments yet...
Related Articles
Yahoo
16 hours ago
- Yahoo
Double meteor shower to peak this week: When and where to best see the shooting stars
NASA says you should give your eyes about 30 minutes to adapt to the darkness outside before you can see the meteors. Two meteor showers will peak at the same time in the early morning hours on Wednesday, a relatively uncommon astronomical occurrence caused by the Earth's orbit passing through two comets' debris trails. The Southern Delta Aquariid and the Alpha Capricornid showers have both been active since July 18 and July 12, respectively, but will peak late Tuesday night, around midnight, and continue into the early hours of Wednesday morning. These two showers combined could produce up to 20 to 30 meteors per hour, Nick Moskovitz, a planetary astronomer with the Lowell Observatory, estimates, according to NPR. Here's what to know about how to prepare for this summer's double meteor shower. What is a meteor shower? Meteorites are falling pieces of debris from comets, asteroids or meteoroids that land on Earth every day, according to NASA. When the material starts to vaporize in Earth's atmosphere, its trail can be visible to people on Earth. This is what we call 'shooting stars.' A meteor shower is what happens when there is a higher-than-usual number of meteors falling in a short period of time. What to know about the Southern Delta Aquariid meteor shower The Southern Delta Aquariid shower has been active since July 18, but its peak will be late at night on July 29 until the early morning hours on July 30, NASA reported. It will remain active until about Aug. 12 and is best seen in the Southern Hemisphere. The meteor shower gets its name from the constellation Aquarius, which is where the shower originates, and the third brightest star in that constellation, which is the Delta Aquarii, reports. What to know about the Alpha Capricornid meteor shower The Alpha Capricornid shower is 'not very strong,' according to the American Meteor Society, and rarely showcases more than five meteors per hour. It has been active since July 12 and will stay active until Aug. 12. What is notable about the Alpha Capricornid shower is that it produces bright, slow-moving fireballs during its activity, which will be visible during its peak on July 29 and July 30. How to watch the meteor showers No special equipment is necessary to watch the meteor showers, but NASA does recommend that viewers try to get as far away from city lights as possible and put away their phones. 'In less than 30 minutes in the dark, your eyes will adapt and you will begin to see meteors,' NASA says. 'Be patient — the show will last until dawn, so you have plenty of time to catch a glimpse.' The best time to try to see the showers will be in the early hours on July 30, after midnight, astronomer Moskovitz told NPR. Stargazers in North America should try to find the best view of the southern part of the sky, specifically for the Southern Delta Aquariid shower, Moskovitz added. The moon is another light source that can sometimes make it hard to see meteor showers from Earth, especially if it's fully visible. Fortunately for stargazers, the moon will be in a Waxing Crescent Phase through Thursday night this week, which means it will be about 25% full, according to Astronomy magazine, so it should not impact the showers' visibility.
Yahoo
19 hours ago
- Yahoo
Double meteor shower to peak this week: When and where to best see the shooting stars
NASA says you should give your eyes about 30 minutes to adapt to the darkness outside before you can see the meteors. Two meteor showers will peak at the same time in the early morning hours on Wednesday, a relatively uncommon astronomical occurrence caused by the Earth's orbit passing through two comets' debris trails. The Southern Delta Aquariid and the Alpha Capricornid showers have both been active since July 18 and July 12, respectively, but will peak late Tuesday night, around midnight, and continue into the early hours of Wednesday morning. These two showers combined could produce up to 20 to 30 meteors per hour, Nick Moskovitz, a planetary astronomer with the Lowell Observatory, estimates, according to NPR. Here's what to know about how to prepare for this summer's double meteor shower. What is a meteor shower? Meteorites are falling pieces of debris from comets, asteroids or meteoroids that land on Earth every day, according to NASA. When the material starts to vaporize in Earth's atmosphere, its trail can be visible to people on Earth. This is what we call 'shooting stars.' A meteor shower is what happens when there is a higher-than-usual number of meteors falling in a short period of time. What to know about the Southern Delta Aquariid meteor shower The Southern Delta Aquariid shower has been active since July 18, but its peak will be late at night on July 29 until the early morning hours on July 30, NASA reported. It will remain active until about Aug. 12 and is best seen in the Southern Hemisphere. The meteor shower gets its name from the constellation Aquarius, which is where the shower originates, and the third brightest star in that constellation, which is the Delta Aquarii, reports. What to know about the Alpha Capricornid meteor shower The Alpha Capricornid shower is 'not very strong,' according to the American Meteor Society, and rarely showcases more than five meteors per hour. It has been active since July 12 and will stay active until Aug. 12. What is notable about the Alpha Capricornid shower is that it produces bright, slow-moving fireballs during its activity, which will be visible during its peak on July 29 and July 30. How to watch the meteor showers No special equipment is necessary to watch the meteor showers, but NASA does recommend that viewers try to get as far away from city lights as possible and put away their phones. 'In less than 30 minutes in the dark, your eyes will adapt and you will begin to see meteors,' NASA says. 'Be patient — the show will last until dawn, so you have plenty of time to catch a glimpse.' The best time to try to see the showers will be in the early hours on July 30, after midnight, astronomer Moskovitz told NPR. Stargazers in North America should try to find the best view of the southern part of the sky, specifically for the Southern Delta Aquariid shower, Moskovitz added. The moon is another light source that can sometimes make it hard to see meteor showers from Earth, especially if it's fully visible. Fortunately for stargazers, the moon will be in a Waxing Crescent Phase through Thursday night this week, which means it will be about 25% full, according to Astronomy magazine, so it should not impact the showers' visibility.
Yahoo
a day ago
- Yahoo
Astronomers Peer Through Stellar Dust to See Black Holes Eating Whole Stars
In a new study, astronomers used the James Webb Space Telescope to study black hole events that would otherwise have been impossible to see—and in the process, they proved that dormant black holes aren't so dormant, after all. A dormant black hole isn't really inactive; it's just all alone. Without any meaningful amount of material around to pull in, a black hole will simply fly through space and present virtually no signal for astronomers looking to find it. Though its mass will bend light in the same characteristic ways as any other black hole, astronomers generally need to see its effect on surrounding matter to identify candidate regions of the sky worth studying at all. An artist's impression of a tidal disruption event. Credit: ESO/L. Calçada However, these 'dormant' singularities will occasionally come into contact with stars and other objects as they move around the galaxy. If they come too close, these objects are gobbled up by the black holes. When the object is a large star, it can be ripped physically apart by the gravitational forces. This star-destroying process is what's known as a tidal disruption event, and it's associated with a huge emission of radiation whenever matter is pulled over the event horizon. Usually, some proportion of the matter is converted to energy and blasted out in a form that astronomers can see. The problem is that very dusty galaxies can hide these events, blocking the X-ray or visible light emissions and hiding information that could help understand black holes and their galaxies. These researchers had previously supposed that in such cases, the radiation from the tidal disruption event should interact with the dust blocking it, producing infrared light that could be detected instead. The James Webb Space Telescope. Credit: NASA So they turned to the Webb telescope, the most advanced infrared detector in existence, to look for these characteristic signals—and found them. The issue was that these galaxies didn't appear to have the structure of an active black hole with a permanent accretion disc. Instead, they looked to be dormant black holes that were transiently eating up a star, producing a short burst of radiation, and then going back to quiescence. Tidal disruption events are surprisingly rare to see, with only a few dozen having been seen in total, but many scientists believe they are actually more common, and just often hidden from view. This study shows how even occluded black holes could be studied in the future—and that even hard-to-study singularities will often provide useful inroads for experimentation.