logo
Scientists spot a mysterious 'ghost plume' in Oman – and it suggests Earth's core could be LEAKING

Scientists spot a mysterious 'ghost plume' in Oman – and it suggests Earth's core could be LEAKING

Daily Mail​18-06-2025

A mysterious 'ghost plume' has been spotted beneath eastern Oman.
Emanating from the Earth's core, this hot pillar of soft rock is pushing upwards from 410 miles (660km) beneath the planet's surface.
Until now, the ghost plume was hidden because it hadn't broken through the surface to form volcanoes.
But, in a new study, researchers have proved the 'ghost plume' exists by looking at how it slows down passing earthquake waves.
Since waves move slower through hot, soft rock, this is a key sign that there is a plume hidden beneath the surface.
Having shown that one ghost pillar exists, the researchers say there might be many more waiting to be found around the world.
Worryingly , that might mean the Earth's core is leaking heat faster than scientists previously thought.
Lead author Dr Simone Pilia, of the King Fahd University of Petroleum, Engineering and Geosciences, told MailOnline: 'It's a reminder that surface silence doesn't mean the mantle is quiet.'
Ghost plumes are a type of mantle plume, pillars of hot rock which form when heat wells up from the boundary of the Earth's outer core, some 1,800 miles (2,890 km) beneath the surface.
These are usually easy to find because they produce lots of volcanic activity at the surface as the molten rock is forced upwards.
Dr Pilia says: 'A ghost plume is a mantle plume that doesn't produce observable surface volcanism, making it essentially "invisible" to traditional geological observation.'
Although there are no volcanoes in Oman, Dr Pilia noticed that seismic waves from earthquakes slow down as they travel through this area.
By analysing the way these waves were warped, Dr Pilia, who named the feature 'Dani' after his son, realised that there might be a cylinder of hot rock hidden beneath the ground.
Dr Pilia and his co-authors used geological evidence and computer simulation to show how the presence of a mantle plume fits with what geologists already know about the area.
Together, this evidence created a strong case that there is an elusive ghost plume lurking underground.
Dr Pilia says: 'Despite lacking surface volcanic activity, all the deep-Earth signals of the plume are there.'
Normally, mantle plumes would emerge at the surface as volcanoes. But Oman is above a layer of thick rock which keeps the plume well below the surface which it can't melt through
Five layers of Earth
Crust: To a depth of up to 43 miles (70km), this is the outermost layer of the Earth, covering both ocean and land areas.
Mantle: Going down to 1,795 miles (2,890km) with the lower mantle, this is the planet's thickest layer and made of silicate rocks richer in iron and magnesium than the crust overhead.
Outer core: Running to a depth of 3,200 miles (5,150km), this region is made of liquid iron and nickel with trace lighter elements.
Inner core: Going down to a depth of 3,958 miles (6,370km) at the very centre of Earth, this region is thought to be made of solid iron and nickel.
Innermost core: Within the inner core, this region is solid iron in a different, but unknown structure to the inner core.
Based on this evidence, the plume is likely to be a cylinder around 125 to 185 miles in diameter (200-300km) and extends at least 410 miles (660km) deep.
The rocks within the plume are up to 300°C (540°F) hotter than the surrounding mantle.
Although these rocks are extremely hot, the researchers say the plume isn't producing volcanic activity due to a 'lid' of rock near the surface.
Unlike above many other plumes, this 60-mile-thick (100km) layer of rock prevents the plume from melting its way to the surface.
Dr Pilia says: 'Even if the plume is hot - and our data suggest it is - the pressure at those depths makes it very hard for melt to form and reach the surface. So, the plume exists, but it's essentially trapped.'
Luckily for the people of Oman, Dr Pilia says this means the plume is 'very unlikely' to produce any volcanic activity in the foreseeable future.
According to the modelling, the plume has been there for at least 40 million years, during which time it affected the drift of the Indian continental plate.
The plume may also explain why parts of Oman continue to rise even after tectonic compression, a process which squeezes the Earth's crust together, has stopped.
The researchers' modelling (pictured) suggests that the plume is a cylinder around 125 to 185 miles in diameter (200-300km) extending at least 410 miles (660km) beneath the surface
Most importantly, this discovery also suggests that there may be many other ghost plumes out there waiting to be discovered, especially under areas with thick rock caps.
That would mean more heat is leaking from the Earth's core than researchers previously thought, which could have big implications for the study of Earth's inner layers.
Mantle plumes are a key part of how the Earth distributes heat and pressure deep beneath the surface.
Studies have shown that they are closely linked to plate tectonics, the planet's magnetic field, and even the evolution of life on Earth.
Dr Pilia says there are 'likely' many more ghost plumes around the world but these may be small and hard to spot without special networks of seismic detectors.
'What makes the Dani plume stand out is that we had just the right data, in just the right place, to finally see it.
'It's a reminder that surface silence doesn't mean the mantle is quiet.'
The Earth is moving under our feet: Tectonic plates move through the mantle and produce Earthquakes as they scrape against each other
Tectonic plates are composed of Earth's crust and the uppermost portion of the mantle.
Below is the asthenosphere: the warm, viscous conveyor belt of rock on which tectonic plates ride.
Earthquakes typically occur at the boundaries of tectonic plates, where one plate dips below another, thrusts another upward, or where plate edges scrape alongside each other.
Earthquakes rarely occur in the middle of plates, but they can happen when ancient faults or rifts far below the surface reactivate.

Orange background

Try Our AI Features

Explore what Daily8 AI can do for you:

Comments

No comments yet...

Related Articles

Is THIS how the world will end? The universe has a 'self-destruct button' that could WIPE OUT life in an instant, scientists warn
Is THIS how the world will end? The universe has a 'self-destruct button' that could WIPE OUT life in an instant, scientists warn

Daily Mail​

time35 minutes ago

  • Daily Mail​

Is THIS how the world will end? The universe has a 'self-destruct button' that could WIPE OUT life in an instant, scientists warn

From the Big Crunch to the heat death of the universe, it seems that science is always finding new ways the cosmos might come to an end. But physicists have now revealed the most devastating doomsday scenario possible. Experts believe the universe may have a built-in 'self-destruct button' called false vacuum decay. If this was ever triggered, every planet, star, and galaxy would be wiped out and life as we know it would become impossible. The basic idea is that our universe isn't currently in its most stable state, meaning we are in what scientists call a 'false vacuum'. If any part of the universe is ever pushed into its stable state, a bubble of 'true vacuum' will expand through the universe, destroying everything it touches. Professor Ian Moss, a cosmologist at Newcastle University, told MailOnline that the universe is like 'a table-top with many dominoes standing on their side.' Professor Moss says: 'They can stay upright unless some small disturbance topples one, and triggers all of them to fall.' What is a false vacuum? All objects contain a certain amount of energy and the amount of energy it contains is called its 'energy state'. The lower the energy state, the more stable the object becomes. If you think about a lump of coal, it has a very high energy state because it contains lots of potential energy, which means it's unstable and could catch on fire. Once that coal has been burned and the energy released as heat, the remaining ash has a very low energy state and becomes stable. Everything in the universe, from lumps of coals to stars, wants to get to its most stable state and so always tends towards the lowest energy state possible. We call the lowest energy state an object can have its 'vacuum' state, but sometimes objects can get trapped in something called a 'false vacuum'. Dr Louise Hamaide, a postdoctoral fellow at the National Institute for Nuclear Physics in Naples, told MailOnline: 'A good analogy for a field in a false vacuum is a marble in a bowl on top of a stool. 'The marble cannot leave the bowl unless it is given some energy in the form of a push, and if it does it will fall all the way to the ground.' Being on the ground is what we would call the vacuum state, whereas the bowl is merely a false vacuum which prevents the marble from falling to the ground. What makes this idea worrying is the possibility that a fundamental part of the universe's structure could be stuck in one of these false vacuums. All it needs is a little push, and the structure of reality itself will come crashing down to the ground. The universe's self-destruct button The idea of a false vacuum gets really scary when we apply it to our current model of reality. The universe and everything in it is made of subatomic particles such as electrons, photons, and quarks. But according to quantum field theory, all of these particles are actually just disturbances in an underlying field. What is false vacuum decay? One of the fundamental concepts of the universe is that things are moving from a state of high energy to a more stable 'ground' state, of lower energy. This fundamental concept holds true even in the strange world of quantum mechanics, with particles trying to reach their ground, called their vacuum state. The concept takes a stranger turn when it comes to the Higgs field – the quantum field which gives particles throughout the universe their mass. It is thought that this field is in its lowest energy state, but one theory states it may not be as stable as it seems. With the right kick, the Higgs field could careen towards its true lower energy state, sparking a chain reaction which would spread in all directions. Dr Alessandro Zenesini, a scientist at the National Institute of Optics in Italy, told MailOnline: 'The basic idea of quantum field theory is to represent reality only with fields. 'Think of a water surface. When flat, it is an empty field. As soon you have a wave, this wave can be seen as a particle which can interact with another wave.' Just like everything else, these fields have energy states, and want to get to their lowest energy state possible like a body of water becoming flat and calm. In the first few seconds of the Big Bang, so much energy was released that it pushed all the fundamental fields down into their vacuum states. But scientists now think that one of the fields might have gotten stuck along the way. Some researchers believe that the Higgs field, the field which makes the elusive Higgs Boson, is stuck in a false vacuum state. This essentially means that the entire universe could be rigged to blow at any moment. What would happen if a false vacuum collapsed? If the Higgs field is ever pushed down to its true vacuum, the resulting 'phase shift' will release a vast amount of energy. This energy is so concentrated that it will force nearby areas of the field out of their false vacuum, dropping their energy level and releasing even more energy. The resulting chain reaction would spread through the universe like the flames from a match dropped into a lake of petrol. A bubble of true vacuum would then spread out in a sphere from the starting point until it consumes the entire cosmos. At its edge, between the true and false vacuum, the energy would collect into a thin wall of incredible power. Dr Hamaide says: 'That kinetic energy of the wall is so high, even though the Higgs carrying this energy is a very heavy particle, it would move at the speed of light. 'So we would never see the wall coming, because light couldn't reach us before the wall did.' If the wall hit the solar system, Dr Hamaide says it would have so much energy that 'it would instantaneously destroy any star or planet its path'. However, what would be left behind after the initial destruction is perhaps even more terrifying. The interaction between the fundamental fields is what gives particles their properties and determines how they interact. This, in turn, determines everything from the physics that holds planets together to the chemical reactions taking place inside our cells. If the Higgs field suddenly takes on a new energy level, none of the physics we are familiar with would be possible. Dr Dejan Stojkovic, a cosmologist from the University at Buffalo, told MailOnline: 'As a consequence, electrons, quarks and neutrinos would acquire masses different from their current values. 'Since the structures that we observe around us are made atoms, whose existence depends on the precise values of the parameters in the standard model, it is likely that all these structures would be destroyed, and perhaps new ones would be formed.' Scientists have no idea what the world left behind by false vacuum decay would be like. But we do know that it would be absolutely incompatible with life as we now know it. What could trigger the end of the world? To trigger false vacuum decay, you would need an extremely powerful force to pack a huge amount of Higgs particles into a tiny space. In the current universe, places with this much energy might not even be possible but the bad news is that the early universe might have been violent enough to do it. In particular, scientists think that dense regions of matter might have been crushed into tiny primordial black holes in the first few seconds of the Big Bang. These are ultra-dense points of matter no larger than a single hydrogen atom but containing the mass of an entire planet. As these black holes evaporate through Hawking radiation, some researchers believe they could trigger false vacuum decay. Professor Moss says: 'Condensation is a similar process to vacuum decay, the condensation of water vapour into clouds is triggered by tiny grains of dust or ice crystals. 'Tiny black holes seed vacuum decay in the same way.' Is the world already over? Perhaps one of the strangest implications of false vacuum decay is that it might have already started somewhere in the universe. Dr Hamaide says: 'Under some very specific assumptions, we showed these bubbles are 100 per cent likely to occur.' According to some calculations, one primordial black hole in the universe would be enough to trigger the universe's self-destruct process. Likewise, due to small fluctuations at the quantum level, known as quantum tunnelling, it is possible that the parts of the universe might randomly jump into the lower energy state at any time. That could mean that a bubble of true vacuum is already out there somewhere in the cosmos, racing towards us at the speed of light and annihilating everything it encounters. The comforting news is that, even at the speed of light, it could take billions of years for a true vacuum bubble to reach us. If the bubble starts far enough away, the expansion of the universe might even mean it never reaches us at all. Dr Hamaide and Professor Moss suggest that the fact we aren't already dead is evidence that there aren't any primordial black holes out there in the first place. We also don't know what effects dark matter and dark energy could have on the energy state of the universe. It might be possible that these mysterious substances reverse any bubble expansions as soon as they occur to keep the universe stable. However, until a bubble of true vacuum does tear our reality apart, there might not be any way to know who's right. The theories and discoveries of thousands of physicists since the 1930s have resulted in a remarkable insight into the fundamental structure of matter. Everything in the universe is found to be made from a few basic building blocks called fundamental particles, governed by four fundamental forces. Our best understanding of how these particles and three of the forces are related to each other is encapsulated in the Standard Model of particle physics. All matter around us is made of elementary particles, the building blocks of matter. These particles occur in two basic types called quarks and leptons. Each consists of six particles, which are related in pairs, or 'generations'. All stable matter in the universe is made from particles that belong to the first generation. Any heavier particles quickly decay to the next most stable level. There are also four fundamental forces at work in the universe: the strong force, the weak force, the electromagnetic force, and the gravitational force. They work over different ranges and have different strengths. Gravity is the weakest but it has an infinite range. The electromagnetic force also has infinite range but it is many times stronger than gravity. The weak and strong forces are effective only over a very short range and dominate only at the level of subatomic particles. The Standard Model includes the electromagnetic, strong and weak forces and all their carrier particles, and explains well how these forces act on all of the matter particles.

Scientists think they have found the oldest rocks on earth
Scientists think they have found the oldest rocks on earth

The Independent

timea day ago

  • The Independent

Scientists think they have found the oldest rocks on earth

A new study has pinpointed what could be the oldest rocks on Earth, found within a remote Canadian rock formation, offering fresh insights into our planet's earliest history. The Nuvvuagittuq Greenstone Belt, located on the eastern shore of Hudson Bay in Quebec, has long been recognised for its ancient geological formations. However, the precise age of these streaked grey stones has been a subject of scientific contention for decades. Research from two decades ago suggested the rocks could be as old as 4.3 billion years, placing them firmly in Earth 's infancy. Yet, other scientists challenged this, arguing that long-ago contaminants had skewed the dating methods, proposing a younger age of 3.8 billion years. In a bid to resolve this long-standing debate, researchers in the latest study sampled a distinct section of rock from the belt. Employing both of the previously used dating techniques – which measure the decay of radioactive elements over time – they arrived at a refined age. Their findings indicate the rocks are approximately 4.16 billion years old, a figure that bridges the gap between earlier estimates and provides a more precise timeline for these ancient geological wonders. This discovery not only refines our understanding of the Nuvvuagittuq Greenstone Belt's immense age but also contributes significantly to the broader scientific effort to map the earliest chapters of Earth 's formation. The different methods "gave exactly the same age,' said study author Jonathan O'Neil with the University of Ottawa. The new research was published Thursday in the journal Science. Earth formed about 4.5 billion years ago from a collapsing cloud of dust and gas soon after the solar system existed. Primordial rocks often get melted and recycled by Earth's moving tectonic plates, making them extremely rare on the surface today. Scientists have uncovered 4 billion-year-old rocks from another formation in Canada called the Acasta Gneiss Complex, but the Nuvvuagittuq rocks could be even older. Studying rocks from Earth's earliest history could give a glimpse into how the planet may have looked — how its roiling magma oceans gave way to tectonic plates — and even how life got started. 'To have a sample of what was going on on Earth way back then is really valuable,' said Mark Reagan with the University of Iowa, who studies volcanic rocks and lava and was not involved with the new study. The rock formation is on tribal Inukjuak lands and the local Inuit community has temporarily restricted scientists from taking samples from the site due to damage from previous visits. After some geologists visited the site, large chunks of rock were missing and the community noticed pieces for sale online, said Tommy Palliser, who manages the land with the Pituvik Landholding Corp. The Inuit community wants to work with scientists to set up a provincial park that would protect the land while allowing researchers to study it. 'There's a lot of interest for these rocks, which we understand,' said Palliser, a member of the community. 'We just don't want any more damage.'

These Canadian rocks may be the oldest on Earth
These Canadian rocks may be the oldest on Earth

The Independent

time2 days ago

  • The Independent

These Canadian rocks may be the oldest on Earth

Scientists have identified what could be the oldest rocks on Earth from a rock formation in Canada. The Nuvvuagittuq Greenstone Belt has long been known for its ancient rocks — plains of streaked gray stone on the eastern shore of Hudson Bay in Quebec. But researchers disagree on exactly how old they are. Work from two decades ago suggested the rocks could be 4.3 billion years old, placing them in the earliest period of Earth's history. But other scientists using a different dating method contested the finding, arguing that long-ago contaminants were skewing the rocks' age and that they were actually slightly younger at 3.8 billion years old. In the new study, researchers sampled a different section of rock from the belt and estimated its age using the previous two dating techniques — measuring how one radioactive element decays into another over time. The result: The rocks were about 4.16 billion years old. The different methods "gave exactly the same age,' said study author Jonathan O'Neil with the University of Ottawa. The new research was published Thursday in the journal Science. Earth formed about 4.5 billion years ago from a collapsing cloud of dust and gas soon after the solar system existed. Primordial rocks often get melted and recycled by Earth's moving tectonic plates, making them extremely rare on the surface today. Scientists have uncovered 4 billion-year-old rocks from another formation in Canada called the Acasta Gneiss Complex, but the Nuvvuagittuq rocks could be even older. Studying rocks from Earth's earliest history could give a glimpse into how the planet may have looked — how its roiling magma oceans gave way to tectonic plates — and even how life got started. 'To have a sample of what was going on on Earth way back then is really valuable,' said Mark Reagan with the University of Iowa, who studies volcanic rocks and lava and was not involved with the new study. The rock formation is on tribal Inukjuak lands and the local Inuit community has temporarily restricted scientists from taking samples from the site due to damage from previous visits. After some geologists visited the site, large chunks of rock were missing and the community noticed pieces for sale online, said Tommy Palliser, who manages the land with the Pituvik Landholding Corp. The Inuit community wants to work with scientists to set up a provincial park that would protect the land while allowing researchers to study it. 'There's a lot of interest for these rocks, which we understand,' said Palliser, a member of the community. 'We just don't want any more damage.' ___ The Associated Press Health and Science Department receives support from the Howard Hughes Medical Institute's Department of Science Education and the Robert Wood Johnson Foundation. The AP is solely responsible for all content.

DOWNLOAD THE APP

Get Started Now: Download the App

Ready to dive into a world of global content with local flavor? Download Daily8 app today from your preferred app store and start exploring.
app-storeplay-store